Hierarchical Self-Assembly in DNA Ionogel: Effect of γ-Radiation on Gel Properties

Jump To References Section

Authors

  • School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067 ,IN
  • Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi - 110062 ,IN
  • School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067 ,IN

DOI:

https://doi.org/10.18311/jsst/2021/26297

Keywords:

DNA Ionogel, Gelation, γ-radiation, Ionizing Radiation
Polymer Science

Abstract

DNA ionogels prepared by adding 1-ethyl-3-methylimidazolium chloride on low energy gamma irradiated DNA solution samples reveal non-trivial self-assembly. Variations in secondary structure and low-frequency gel rigidity modulus G0 captured this unique hitherto unexplored features of these gels. Interestingly, at higher radiation dose (0 to 100 Gy) samples could partially lose their initial rigidity. Dynamic light scattering revels dose dependent relaxation dynamics corresponding to ergodicity breaking time. In particular, viscosity and rheology showed that the time of gelation tgel, temperature of gelation Tgel and strength of gelation G0 are gamma ray dose dependent. DNA Ionogel melting with temperature shows self-assembled characteristics of this biomaterial. Gelation kinetics of ionizing radiation treated DNA strands have been studied in literature.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-02-15

How to Cite

Pandey, P. K., Rawat, K., & Bohidar, H. B. (2023). Hierarchical Self-Assembly in DNA Ionogel: Effect of γ-Radiation on Gel Properties. Journal of Surface Science and Technology, 37(3-4), 179–185. https://doi.org/10.18311/jsst/2021/26297
Received 2020-10-24
Accepted 2022-04-26
Published 2023-02-15

 

References

S. V. Vlierberghe, P. Dubruel, E. Schacht, Biomacromolecules, 12, 1387 (2011). https://doi.org/10.1021/bm200083n. PMid:21388145. DOI: https://doi.org/10.1021/bm200083n

U. M.Sh, J. B. Lee, N. Park, S. Y. Kwon, C.C. Umbach, D. Luo, Nature Materials, 5, 797 (2006). https://doi.org/10.1038/ nmat1741. PMid:16998469. DOI: https://doi.org/10.1038/nmat1741

J. Dupont, R. F. de Souza, P. A. Z. Suarez, Chem. Rev., 102, 3667 (2002). https://doi.org/10.1021/cr010338r. PMid:12371898. DOI: https://doi.org/10.1021/cr010338r

J. L. Deau, L. Viau, A. Vioux, Chem. Soc. Rev., 40, 907 (2011). https://doi.org/10.1039/C0CS00059K. PMid:21180731. DOI: https://doi.org/10.1039/C0CS00059K

G. M. Kendall, M. P. Little, R. Wakeford, K.J. Bunch, J.C.H. Miles, T.J. Vincent, J.R. Meara, M.F.G. Murphy, Leukemia, 27, 3 (2013). https://doi.org/10.1038/leu.2012.151. PMid:22766784 PMCid:PMC3998763. DOI: https://doi.org/10.1038/leu.2012.151

M. S. Pearce, J. A. Salotti, M. P. Little, K. McHugh, C. Lee, K. P. Kim, N. L. Howe, C. M. Ronckers, P. Rajaraman, A. W. Sir Craft, L. Parker, A. B. de Gonzalez, Lancet, 380, 499 (2012). https://doi.org/10.1016/S0140-6736(12)60815-0. DOI: https://doi.org/10.1016/S0140-6736(12)60815-0

R. Smith-Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De González, D. L. Miglioretti, Archives of internal medicine, 169, 2078 (2009). https:// doi.org/10.1001/archinternmed.2009.427. PMid:20008690 PMCid:PMC4635397. DOI: https://doi.org/10.1001/archinternmed.2009.427

E. Picano, E. Vano, Cardiovascular Ultrasound. 9, 35 (2011). https://doi.org/10.1186/1476-7120-9-35. PMid:22104562 PMCid:PMC3256101. DOI: https://doi.org/10.1186/1476-7120-9-35

M. Ravanat, M. Tavernaporro, H. Menoni, D. Angelov, Cancer Lett., 327, 5 (2012). https://doi.org/10.1016/j.canlet. 2012.04.005. PMid:22542631. DOI: https://doi.org/10.1016/j.canlet.2012.04.005

L. Eccles, P. O’Neill, M. E. Lomax, Mutat. Res. 711, 134 (2011). https://doi.org/10.1016/j.mrfmmm.2010.11.003. PMid:21130102 PMCid:PMC3112496. DOI: https://doi.org/10.1016/j.mrfmmm.2010.11.003

J. F. Ward, Prog. Nucleic. Acid. Res. Mol. Biol., 35, 95 (1988). https://doi.org/10.1016/S0079-6603(08)60611-X. DOI: https://doi.org/10.1016/S0079-6603(08)60611-X

A. Asaithamby, D. J. Chen, Mutat. Res., 711, 87 (2011). https://doi.org/10.1016/j.mrfmmm.2010.11.002. PMid:21126526 PMCid:PMC3318975. DOI: https://doi.org/10.1016/j.mrfmmm.2010.11.002

B. Stenerlöw, K. H. Karlsson, B. Cooper, B. Rydberg, Radiat. Res., 159, 502 (2003). https://doi.org/10.1667/0033- 7587(2003)159[0502:MOPDDS]2.0.CO;2. DOI: https://doi.org/10.1667/0033-7587(2003)159[0502:MOPDDS]2.0.CO;2

N. Orakdogen, B. Erman, O. Okay, Macromolecules, 43, 1530 (2010). https://doi.org/10.1021/ma902558f. DOI: https://doi.org/10.1021/ma902558f

J. R. Milligan, J. Y. Ng, C. C. Wu, J. A. Aguilera, R. C. Fahey, J. F. Ward, Radiat. Res., 143, 273 (1995). https://doi. org/10.2307/3579213. PMid:7652164. DOI: https://doi.org/10.2307/3579213

A. R. Peoples, K. R. Mercer, W. A. Bernhard, J. Phys. Chem. B., 114, 9283 (2010). https://doi.org/10.1021/jp103362z. PMid:20583765 PMCid:PMC2914509. DOI: https://doi.org/10.1021/jp103362z

H. J. Kong, D. Kaigler, K. Kimand, D. J. Mooney, Biomacromolecules, 5, 1720 (2004). https://doi.org/10.1021/ bm049879r. PMid:15360280. DOI: https://doi.org/10.1021/bm049879r

X. Yang, Z. Zhu, Q. Liu, X. Chen, M. Ma, Radiation Physics and Chemistry, 77, 954 (2008). https://doi.org/10.1016/j. radphyschem.2008.02.011. DOI: https://doi.org/10.1016/j.radphyschem.2008.02.011

P. K. Pandey, K. Rawat, V. K. Aswal, J. Kohlbrecher, H. B. Bohidar, Phys. Chem. Chem. Phys., 19, 804 (2017). https:// doi.org/10.1039/C6CP06229F. PMid:27929161. DOI: https://doi.org/10.1039/C6CP06229F

K. Rawat, V. K. Aswal, H. B. Bohidar, J. Phys. Chem. B, 116, 14805 (2012). https://doi.org/10.1021/jp3102089. PMid:23194173. DOI: https://doi.org/10.1021/jp3102089

J. D. Ferry, Viscoelastic Properties of Polymers. John Wiley & Sons (1980).

H. Barnes, A Handbook of Elementary Rheology. University of Wales Press, Wales (2000).

D.W. Gruenwedel, In: Encyclopedia of Food Sciences and Nutrition (Second Edition), (2003).

J. Sambrook, E. F. Fritsch, T. Maniatis, Molecular Cloning. Vol. 2. New York: Cold Spring Harbor Laboratory Press, (1989).

A. Aharony, D. Stauffer, Introduction to Percolation Theory. Taylor and Francis, London, (1994).

D. Stauffer, A. Coniglio, A. Adams, Adv. Polym. Sci., 44, 103 (1982). DOI: https://doi.org/10.1007/3-540-11471-8_4

L. de Arcangelis, E. Del Gado, A. Coniglio, Eur. Phys. J. E., 9, 277 (2002). https://doi.org/10.1140/epje/i2002-10078-0. PMid:15010920. DOI: https://doi.org/10.1140/epje/i2002-10078-0

J. Sharma, H. B. Bohidar, Colloid and Polymer Science, 278, 15 (2000). https://doi.org/10.1007/s003960050003. DOI: https://doi.org/10.1007/s003960050003

A. Ajji, L. Choplin, Macromolecules, 24, 5221 (1991). https://doi.org/10.1021/ma00018a031. DOI: https://doi.org/10.1021/ma00018a031

M. C. Moran, M. G. Miguel, B. Lindman, Langmuir, 23, 6478 (2007). https://doi.org/10.1021/la700672e. PMid:17488045. DOI: https://doi.org/10.1021/la700672e

Most read articles by the same author(s)