Ecofriendly Synthesis and Characterization of Magnesium based Metal - Organic Frame Work
DOI:
https://doi.org/10.18311/jsst/2021/28590Keywords:
Benzenedicarboxylic Acid, Clitoria ternatea, Microwave, FT-IR, SEMAbstract
Magnesium based metal - organic Framework (MOF) was synthesized by using Benzene Di-Carboxylic acid (BDC), MgSO4.7H2O and a flower extract of Clitoria ternatea. The prepared MOF was characterized by FTIR spectrum, SEM-EDS, XRD, DLS and PL Spectrum. The crystalline nature of the synthesized MOF was revealed in XRD patterns. The nano particle nature of the MOF was confirmed from the SEM pictures. FT-IR spectra showed a peak at 520cm-1 designated characteristic absorption bands of synthesized Mg-MOF nano particles. The zeta potential value showed that the surface charge of the synthesized MOF is neutral and hence disperse in solution without having any tendency for agglomeration and coagulation on standing. The photoluminescence spectra indicated luminescent nature and hence this nano crystalline MOF finds very good application as luminescent material and as sensing material.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2022-09-06
Published 2023-02-15
References
O. Shekhah, J. Liu, R. A. Fischer, C. Woll. Chem. Soc. Rev., 40, 1081 (2011). https://doi.org/10.1039/c0cs00147c. PMid:21225034. DOI: https://doi.org/10.1039/c0cs00147c
T. Ghanbari, F. Abnisa, W. Daud, D.W.M.A. Wan. Sci. Tot. Environ., 707, 10, 13500 (2019). https://doi.org/10.1016/j.scitotenv.2019.135090. PMid:31863992. DOI: https://doi.org/10.1016/j.scitotenv.2019.135090
F. Al-Rowili, A. Jamal, M. S. Ba-Shamakh, A. Rana. ACS Sustain. Chem. Eng., 6, 15895 (2018). https://doi.org/10.1021/acssuschemeng.8b03843. DOI: https://doi.org/10.1021/acssuschemeng.8b03843
Q. Wang, D. Astruc. Chem. Rev., 120, 1438 (2019). https:// doi.org/10.1021/acs.chemrev.9b00223. PMid:31246430. DOI: https://doi.org/10.1021/acs.chemrev.9b00223
J. Ren, H.W. Langmi, B.C. North, M. Mathe. Int. J. Energy Res., 39, 607 (2014). https://doi.org/10.1002/er.3255. DOI: https://doi.org/10.1002/er.3255
J.R. Li, R.J. Kuppler, H.C. Zhou. Chem. Soc. Rev., 38, 1477 (2009). https://doi.org/10.1039/b816681c, https://doi. org/10.1039/ b802426j. PMid:19384449. DOI: https://doi.org/10.1039/b802426j
S. Yang, V.V. Karve, A. Justin, I. Kochetygov, J. Espín, M. Asgari, W. L. Queen et al. Coord. Chem. Rev., 427, 213525 (2021). https://doi.org/10.1016/j.ccr.2020.213525, https://doi.org/10.1016/j.ccr.2020.213551. DOI: https://doi.org/10.1016/j.ccr.2020.213525
Y.Y. Tong, Y.F Li, L. Sun, R. Yang, S. Zhang, Y. Fu, R. Chen. Sep. Purif. Technol., 250, 117142 (2020). https://doi. org/10.1016/j.seppur.2020.117142. DOI: https://doi.org/10.1016/j.seppur.2020.117142
V.J. Pastore, T.R. Cook, J. Rzayev. Chem Mater., 30, 8639 (2018). https://doi.org/10.1021/acs.chemmater.8b03881. DOI: https://doi.org/10.1021/acs.chemmater.8b03881
M.K. Buschbaum, F. Beuerle, C. Feldmann. Microporous Mesoporous Mater., 216, 171 (2015). https://doi.org/10.1016/j.micromeso.2015.03.036. DOI: https://doi.org/10.1016/j.micromeso.2015.03.036
C. Qing, Y. Yiting, W. Liju, G. Zhiqi, Z. Yunchun, W. Dongmei, L.A. Chunxia. Int. J. Inorg. Chem., 646, 437 (2020).
P.A. Ochoa, G. Givaja, P.J.S. Miguel, O. Castillo, F. Zamora. Inorg. Chem. Commun., 10, 921 (2007). https://doi.org/10.1016/j.inoche.2007.04.024. DOI: https://doi.org/10.1016/j.inoche.2007.04.024
D. Buso, K.M. Nairn, M. Gimona, A.J. Hill, P. Falcaro. Chem. Mater., 23, 929 (2011). https://doi.org/10.1021/cm101519s. DOI: https://doi.org/10.1021/cm101519s
X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, S. Deng. Microporous Mesoporous Mater., 180, 114 (2013). https://doi.org/10.1016/j.micromeso.2013.06.023. DOI: https://doi.org/10.1016/j.micromeso.2013.06.023
F. Asadi, H. Forootanfar, M. Ranjbar, A. Asadipour. Arab. J. Chem., 13, 7820 (2020). https://doi.org/10.1016/j.arabjc.2020.09.013. DOI: https://doi.org/10.1016/j.arabjc.2020.09.013
J.J. Richardson, K. Liang. Small, 14, 1702958 (2017). https:// doi.org/10.1002/smll.201702958. PMid:29168918. DOI: https://doi.org/10.1002/smll.201702958
G.K. Oguis, E.K. Gilding, M.A. Jackson, D. Caik. J Front. Plant Sci., 10, 645 (2019). https://doi.org/10.3389/fpls.2019.00645. PMid:31191573 PMCid:PMC6546959. DOI: https://doi.org/10.3389/fpls.2019.00645
S.S. Swain, K.K. Rout, P.K. Chand. Appl. Biochem. Biotechnol., 168, 487 (2012). https://doi.org/10.1007/s12010-012-9791-8. PMid:22843061. DOI: https://doi.org/10.1007/s12010-012-9791-8
S. Rasha Saad, X.T. Brian Sheng, A. Fadli et al. J. Plant Biol., 4, 1 (2015).
H.A. Salam, H.H. El- Maghrbi, F. Zahran, T. Zaki. Korean J Chem Eng., 37, 670 (2020). https://doi.org/10.1007/s11814- 020-0491-8.
N. John Sushma, D. Prathyusha, G. Swathi, T. Madhavi, B. Deva Prasad Raju, K. Mallikarjuna, Hak-Sung Kim. Appl. Nanosci., 6, 437 (2016). https://doi.org/10.1007/s13204- 015-0455-1. DOI: https://doi.org/10.1007/s13204-015-0455-1
J.Z. Chan, R. Rasit Ali, K. Shameli, M.S.N. Salleh, K.X Lee, E.D. Mohamed Isa. IOP Conf. Ser: Mater. Sci. Eng., 808, (2020). https://doi.org/10.1088/1757-899X/808/1/012036. DOI: https://doi.org/10.1088/1757-899X/808/1/012036
T. K.N. Tran, H.L. Ho, H.V. Nguyen, B.T. Tran, T.T. Nguyen, P.Q.T. Bui, L.G. Bach. Open Chem. J., 20, 52 (2021). https://doi.org/10.1515/chem-2021-0110. DOI: https://doi.org/10.1515/chem-2021-0110
K. Sreekanth Mahadeva, J. Fan, A. Biswas, K. S. Sreelatha, L. Belova, K.V. Rao. Nanomater., 3, 486 (2013). https://doi.org/10.3390/nano3030486. PMid:28348346 PMCid: PMC5304652. DOI: https://doi.org/10.3390/nano3030486