Attenuation of Doxorubicin Induced Cardiotoxicity in Wistar Rats by Extracts of Fruits of Ziziphus jujuba Lam

Jump To References Section

Authors

  • Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune - 411038 Maharashtra ,IN
  • Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune - 411038 Maharashtra ,IN
  • Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune - 411038 Maharashtra ,IN
  • Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune - 411038 Maharashtra ,IN
  • Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune - 411038 Maharashtra ,IN
  • Department of Cardiology, Shri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bangalore – 560066, Karnataka ,IN
  • Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune - 411038 Maharashtra ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i2/31316

Keywords:

Cardioprotective, Doxorubicin, ECG Parameters, Hemodynamic Parameters, Nebivolol, Ziziphus jujuba Lam

Abstract

The objective of the study was to evaluate the cardioprotective activity of fruits of Ziziphus jujuba Lam. in doxorubicin induced cardiotoxicity in Wistar rats. The ethanolic and aqueous extract of fruits of Z. jujuba has been prepared. Male Wistar rats were divided into seven groups. Vehicle control was Group 1. Doxorubicin 5 mg/kg i.p. was administered to Group 2 animals on the 7th and 14th day. Animals in groups 3 and 4 were dosed with ethanolic extracts of 200 and 400 mg/kg p.o. while groups 5 and 6 received aqueous extracts of 200 and 400mg/kg i.p. Animals from group 7 were given nebivolol 5 mg/kg p.o. All the animals were treated for 28 days. Doxorubicin (2.5 mg/kg) was injected intraperitoneally to group 2 to group 7 on day 7th and day 14th. Body weight, ECG, blood pressure, CK-MB, Cardiac troponin-I and LDH were the study parameters. The histology of the heart was performed at the end of the study. Doxorubicin showed cardiotoxicity manifested by changes in serum marker enzymes, ECG and hemodynamic parameters which were further confirmed by histology of the heart. These changes induced by doxorubicin were attenuated by treatment with extracts of the fruit of Ziziphus jujuba Lam. It is concluded that aqueous extract of the fruit of Ziziphus jujuba Lam. (400 mg/kg p.o.) treatment for 28 days protects the heart of rats in doxorubicin induced cardiotoxicity.

Downloads

Download data is not yet available.

Published

2023-05-11

How to Cite

Tambekar, O. P., Shiranal, P., Muthal, A. P., Shinde, V. M., Kulkarni, R. G., Baikampady, S. V., & Bodhankar, S. L. (2023). Attenuation of Doxorubicin Induced Cardiotoxicity in Wistar Rats by Extracts of Fruits of <i>Ziziphus jujuba</i> Lam. Toxicology International, 30(2), 161–171. https://doi.org/10.18311/ti/2023/v30i2/31316
Received 2022-09-26
Accepted 2023-04-13
Published 2023-05-11

 

References

Schirone L, D’Ambrosio L, Forte M, Genovese R, Schiavon S, Spinosa G, Iacovone G, Valenti V, Frati G, Sciarretta S. Mitochondria and doxorubicin-Induced cardiomyopathy: A complex interplay. Cells. 2022; 11(13):2000. https://doi.org/10.3390/cells11132000 PMid:35805084 PMCid:PMC9266202 DOI: https://doi.org/10.3390/cells11132000

Balaei MR, Momeny M, Babaeikelishomi R, Mehr SE, Tavangar SM, Dehpour AR. The modulatory effect of lithium on doxorubicin-induced cardiotoxicity in rat. Eur J Pharmacol. 2010; 641(2-3):193-8. https://doi.org/10.1016/j. ejphar.2010.05.046 PMid:20534381 DOI: https://doi.org/10.1016/j.ejphar.2010.05.046

Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021; 139:111708. https://doi.org/10.1016/j.biopha.2021.111708 PMid:34243633 DOI: https://doi.org/10.1016/j.biopha.2021.111708

Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses. FASEB J. 1990; 4(13):3076-86. https://doi.org/10.1096/fasebj.4.13.2210154 DOI: https://doi.org/10.1096/fasebj.4.13.2210154

Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, Nagy AA, Mosli HA, Mohamadin AM, Ashour OM. Cranberry (Vaccinium macrocarpon) protects against doxorubicininduced cardiotoxicity in rats. Food Chem Toxicol. 2010; 48(5):1178-84. https://doi.org/10.1016/j.fct.2010.02.008 PMid:20146931 DOI: https://doi.org/10.1016/j.fct.2010.02.008

Abdel-Wahab MH, El-Mahdy MA, Abd-Ellah MF, Helal GK, Khalifa F, Hamada FM. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart. Pharmacol Res. 2003; 48(5):461-5. https://doi.org/10.1016/ S1043-6618(03)00214-7 PMid:12967591 DOI: https://doi.org/10.1016/S1043-6618(03)00214-7

Hamza A, Amin A, Daoud S. The protective effect of a purified extract of Withania somnifera against doxorubicin- induced cardiac toxicity in rats. Cell Biol Toxicol. 2008; 24(1):63-73. https://doi.org/10.1007/s10565-007-9016-z PMid:17520333 DOI: https://doi.org/10.1007/s10565-007-9016-z

Xin YF, Wan LL, Peng JL, Guo C. Alleviation of the acute doxorubicin-induced cardiotoxicity by Lycium barbarum polysaccharides through the suppression of oxidative stress. Food Chem Toxicol. 2011; 49(1):259-64. https://doi. org/10.1016/j.fct.2010.10.028 PMid:21056614 DOI: https://doi.org/10.1016/j.fct.2010.10.028

El-Dayem SM, Fouda FM, Ali EH, Motelp BA. The antitumor effects of tetrodotoxin and/or doxorubicin on Ehrlich ascites carcinoma-bearing female mice. Toxicol Ind Health. 2013; 29(5):404-17. https://doi.org/10.1177/0748233711434955 PMid:22317827 DOI: https://doi.org/10.1177/0748233711434955

Oliveira PJ, Bjork JA, Santos MS, Leino RL, Froberg MK, Moreno AJ, Wallace KB. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol. 2004; 200(2):159-68. https://doi.org/10.1016/j.taap.2004.04.005 PMid:15476868 DOI: https://doi.org/10.1016/j.taap.2004.04.005

Weiss R. Nebivolol: A novel beta-blocker with nitric oxideinduced vasodilatation. Vasc Health Risk Manag. 2006; 2(3):303-8. https://doi.org/10.2147/vhrm.2006.2.3.303 PMid:17326335 PMCid:PMC1993984 DOI: https://doi.org/10.2147/vhrm.2006.2.3.303

Priyadarsini KI, Khopde SM, Kumar SS, Mohan H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem. 2002; 50(7):2200-6. https://doi. org/10.1021/jf011275g PMid:11902978 DOI: https://doi.org/10.1021/jf011275g

Türk G, Ateşşahin A, Sönmez M, Ceribaşi AO, Yüce A. Improvement of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril. 2008; 89(5 Suppl):1474-81. https://doi.org/10.1016/j.fertnstert. 2007.04.059 PMid:17681317 DOI: https://doi.org/10.1016/j.fertnstert.2007.04.059

Ghanbari-Niaki A, Hosseini F, Broom DR, Tejenjari B, Rahmati-Ahmadabad S. Combined effects of high-intensity aerobic exercise training and Ziziphus jujuba extract on tissue nesfatin-1 in Rats. Front Endocrinol (Lausanne). 2022; 13:845014. https://doi.org/10.3389/fendo.2022.845014 PMid:35592780 PMCid:PMC9110837 DOI: https://doi.org/10.3389/fendo.2022.845014

Mesaik AM, Poh HW, Bin OY, Elawad I, Alsayed B. In vivo anti-inflammatory, anti-bacterial and anti-diarrhoeal activity of Ziziphus Jujuba fruit extract. Open Access Maced J Med Sci. 2018; 6(5):757-766. https://doi.org/10.3889/oamjms. 2018.168 PMid:29875842 PMCid:PMC5985874 DOI: https://doi.org/10.3889/oamjms.2018.168

Sakthivel M, Elanchezhian R, Ramesh E, Isai M, Jesudasan CN, Thomas PA, Geraldine P. Prevention of seleniteinduced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res. 2008; 86(2):251-9. https://doi. org/10.1016/j.exer.2007.10.016 PMid:18068705 DOI: https://doi.org/10.1016/j.exer.2007.10.016

Kannan MM, Quine SD. Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study. Eur J Pharmacol. 2011; 659(1):45-52. https://doi.org/10.1016/j. ejphar.2011.02.037 PMid:21385579 DOI: https://doi.org/10.1016/j.ejphar.2011.02.037

Beserra AM, Calegari PI, Souza Mdo C, Dos Santos RA, Lima JC, Silva RM, Balogun SO, Martins DT. Gastroprotective and ulcer-healing mechanisms of ellagic acid in experimental rats. J Agric Food Chem. 2011; 59(13):6957-65. https:// doi.org/10.1021/jf2003267 PMid:21644797 DOI: https://doi.org/10.1021/jf2003267

Suzuki N, Masamune A, Kikuta K, Watanabe T, Satoh K, Shimosegawa T. Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig Dis Sci. 2009; 54(4):802-10. https://doi.org/10.1007/s10620-008-0423-7 PMid:18651219 DOI: https://doi.org/10.1007/s10620-008-0423-7

Kaeidi A, Taati M, Hajializadeh Z, Jahandari F, Rashidipour M. Aqueous extract of Zizyphus jujuba fruit attenuates glucose induced neurotoxicity in an in vitro model of diabetic neuropathy. Iran J Basic Med Sci. 2015; 18(3):301-6

Lu Y, Bao T, Mo J, Ni J, Chen W. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit. J Zhejiang Univ Sci B. 2021; 22(6):431-449. https://doi.org/10.1631/jzus.B2000594 PMid:34128368 PMCid:PMC8214949 DOI: https://doi.org/10.1631/jzus.B2000594

Hemmati M, Zohoori E, Mehrpour O, Karamian M, Asghari S, Zarban A, Nasouti R. Anti-atherogenic potential of jujube, saffron and barberry: Anti-diabetic and antioxidant actions. EXCLI J. 2015; 14:908-15

Bhatt N, Deshpande M. A critical review and scientific prospective on contraceptive therapeutics from ayurveda and allied ancient knowledge. Front Pharmacol. 2021; 12:629591. https://doi.org/10.3389/fphar.2021.629591 PMid:34149405 PMCid:PMC8210421 DOI: https://doi.org/10.3389/fphar.2021.629591

Shad AA, Ahmad S, Ullah R, AbdEl-Salam NM, Fouad H, Ur Rehman N, Hussain H, Saeed W. Phytochemical and biological activities of four wild medicinal plants. Scientific World Journal. 2014; 2014:857363. https:// doi.org/10.1155/2014/857363 PMid:25374941 PMCid:PMC4211140 DOI: https://doi.org/10.1155/2014/857363

O’Bryan RM, Baker LH, Gottlieb JE, Rivkin SE, Balcerzak SP, Grumet GN, Salmon SE, Moon TE, Hoogstraten B. Dose response evaluation of adriamycin in human neoplasia. Cancer. 1977; 39(5):1940-8. https://doi.rg/10.1002/1097-0142(197705)39:5<1940::AIDCNCR2820390505> 3.0.CO;2-0 PMid:858124 DOI: https://doi.org/10.1002/1097-0142(197705)39:5<1940::AID-CNCR2820390505>3.0.CO;2-0

Namiki M. Antioxidants/antimutagens in food. Crit Rev Food Sci Nutr. 1990; 29(4):273-300. https://doi. org/10.1080/10408399009527528 PMid:2257080 DOI: https://doi.org/10.1080/10408399009527528

Horenstein MS, Vander Heide RS, L’Ecuyer TJ. Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol Genet Metab. 2000; 71(1-2):436-44. https://doi.org/10.1006/mgme.2000.3043 PMid:11001837 DOI: https://doi.org/10.1006/mgme.2000.3043

Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012; 52(6):1213-25. https://doi.org/10.1016/j. yjmcc.2012.03.006 PMid:22465037 DOI: https://doi.org/10.1016/j.yjmcc.2012.03.006

Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995; 57:707- 36. https://doi.org/10.1146/annurev.ph.57.030195.003423 PMid:7539994 DOI: https://doi.org/10.1146/annurev.ph.57.030195.003423

Speth PA, van Hoesel QG, Haanen C. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet. 1988; 15(1):15-31. https://doi.org/10.2165/00003088-198815010- 00002 PMid:3042244 DOI: https://doi.org/10.2165/00003088-198815010-00002

Chen Y, Huang T, Shi W, Fang J, Deng H, Cui G. Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: A systematic review of the literature. J Mol Cell Cardiol. 2020; 138:88-98. https:// doi.org/10.1016/j.yjmcc.2019.11.150 PMid:31751567 DOI: https://doi.org/10.1016/j.yjmcc.2019.11.150

Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res. 2000; 39(3):257-88. https://doi.org/10.1016/S0163- 7827(00)00005-9 PMid:10799718 DOI: https://doi.org/10.1016/S0163-7827(00)00005-9

Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology. 2005; 212(2-3):116-23. https://doi.org/10.1016/j.tox.2005.04.016 PMid:15946783 DOI: https://doi.org/10.1016/j.tox.2005.04.016

Upaganlawar A, Balaraman R. Cardioprotective effects of Lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in Wistar rats: A biochemical and histoarchitecture study. J Young Pharm. 2011; 3(4):297-303. https://doi.org/10.4103/0975-1483.90241 PMid:22224036 PMCid:PMC3249742 DOI: https://doi.org/10.4103/0975-1483.90241

De Beer EL, Bottone AE, Voest EE. Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: A review. Eur J Pharmacol. 2001;415(1):1-11. https://doi.org/10.1016/S0014-2999(01) 00765-8 PMid:11245845 DOI: https://doi.org/10.1016/S0014-2999(01)00765-8

Kilickap S, Akgul E, Aksoy S, Aytemir K, Barista I. Doxorubicin-induced second degree and complete atrioventricular block. Europace. 2005; 7(3):227-30. https://doi.org/10.1016/j.eupc.2004.12.012 PMid:15878560 DOI: https://doi.org/10.1016/j.eupc.2004.12.012

Panchal SK, Poudyal H, Arumugam TV, Brown L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J Nutr. 2011 Jun; 141(6):1062-9. https://doi.org/10.3945/jn.111.137877 PMid:21508207 DOI: https://doi.org/10.3945/jn.111.137877

Jiménez R, Duarte J, Perez-Vizcaino F. Epicatechin: Endothelial function and blood pressure. J Agric Food Chem. 2012; 60(36):8823-30. https://doi.org/10.1021/ jf205370q PMid:22440087 DOI: https://doi.org/10.1021/jf205370q

Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int J Mol Sci. 2021; 22(10):5094. https://doi.org/10.3390/ijms22105094 PMid:34065781 PMCid:PMC8151300 DOI: https://doi.org/10.3390/ijms22105094

Xue X, Zhao A, Wang Y, Ren H, Du J, Li D, Li Y. Composition and content of phenolic acids and flavonoids among the different varieties, development stages, and tissues of Chinese Jujube (Ziziphus jujuba Mill.). PLoS One. 2021; 16(10):e0254058. https://doi.org/10.1371/journal. pone.0254058 PMid:34648512 PMCid:PMC8516285 DOI: https://doi.org/10.1371/journal.pone.0254058

Hou XW, Jiang Y, Wang LF, Xu HY, Lin HM, He XY, He JJ, Zhang S. Protective role of granulocyte colony-stimulating factor against adriamycin induced cardiac, renal and hepatic toxicities. Toxicol Lett. 2009; 187(1):40-4. https:// doi.org/10.1016/j.toxlet.2009.01.025 PMid:19429242 DOI: https://doi.org/10.1016/j.toxlet.2009.01.025

Gliszczyńska-Swigło A, Ciska E, Pawlak-Lemańska K, Chmielewski J, Borkowski T, Tyrakowska B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam. 2006; 23(11):1088-98. https://doi. org/10.1080/02652030600887594 PMid:17071511 DOI: https://doi.org/10.1080/02652030600887594