Ameliorative Effect of SR48692 on the Testicular and Epididymal Impairments of High-Fat Diet- Induced Swiss Albino Mice

Jump To References Section

Authors

  • Department of Zoology, University of Allahabad, Allahabad – 211002, Uttar Pradesh ,IN
  • Department of Zoology, University of Allahabad, Allahabad – 211002, Uttar Pradesh ,IN
  • Department of Zoology, University of Allahabad, Allahabad – 211002, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i3/42110

Keywords:

High-Fat Diet, Histopathology, Neurotensin, Reproduction, SR48692

Abstract

This study investigated the role of Neurotensin (NT) receptor-1 antagonist SR48692 on High-Fat Diet (HFD)-induced considerable morphological alterations in the testis and epididymis in mice. Excessive intake of fat and a sedentary lifestyle are major causes of metabolic comorbidities in the current obesogenic environment. Consumption of HFD induces NT release in the gut, which promotes lipid absorption. Elevated NT is associated with metabolic alterations and imbalanced energy status which could be responsible for a negative impact on reproductive outcomes. Male mice (n = 24) were randomly assigned, based on diet into Control Diet (CD) and HFD for 4 weeks; they were further divided into 2 subgroups and administered saline and SR48692 (100 μg/kg b.w.) intraperitoneally for the next 4 weeks. The present findings revealed that HFD-induced obesity caused significant alterations in circulating lipid and reproductive hormone profiles leading to deterioration of testicular and epididymal histoarchitechture. However, the co-treatment of SR48692 with HFD has significantly restored the HFD-induced detrimental effect on lipid and reproductive hormone profiles, justified by the improvements in histoarchitechture of the testis and epididymis. However, only SR48692 administered group showed adverse effects on the studied parameters. The results reported herein showed that SR48692 have the efficacy to actively overcome the HFD-induced detrimental effects. Therefore, SR48692 might be considered for the therapeutic role in HFDinduced reproductive impairments.

Downloads

Download data is not yet available.

Published

2024-07-24

How to Cite

Verma, P., Pal, H., & Mohanty, B. (2024). Ameliorative Effect of SR48692 on the Testicular and Epididymal Impairments of High-Fat Diet- Induced Swiss Albino Mice. Toxicology International, 31(3), 435–442. https://doi.org/10.18311/ti/2024/v31i3/42110
Received 2024-03-18
Accepted 2024-05-28
Published 2024-07-24

 

References

He Z, Yin G, Li QQ, Zeng Q, Duan J. Diabetes mellitus causes male reproductive dysfunction: A review of the evidence and mechanisms. In Vivo. 2021; 35(5):2503-11. https://doi.org/10.21873/invivo.12531 DOI: https://doi.org/10.21873/invivo.12531

Hersek İ, Köroğlu MK, Coskunlu B, Ertaş B, Şener G, Ercan F. Apocynin ameliorates testicular toxicity in highfat diet-fed rats by regulating oxidative stress. Clin Exp Health Sci. 2023; 13(1):75-83. https://doi.org/10.33808/ clinexphealthsci.1035133 DOI: https://doi.org/10.33808/clinexphealthsci.1035133

Fan Y, Liu Y, Xue K, Gu G, Fan W, Xu Y, et al. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier. PloS One. 2015; 10(4):e0120775. https://doi.org/10.1371/journal. pone.0120775 DOI: https://doi.org/10.1371/journal.pone.0120775

Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterolog. 2007; 132(6):2087- 102. https://doi.org/10.1053/j.gastro.2007.03.052 DOI: https://doi.org/10.1053/j.gastro.2007.03.052

Martins AD, Majzoub A, Agawal A. Metabolic syndrome and male fertility. World J Mens Health. 2019; 37(2):113. https://doi.org/10.5534/wjmh.180055 DOI: https://doi.org/10.5534/wjmh.180055

Ratner C, Hundahl C, Holst B. The metabolic actions of neurotensin secreted from the gut. Cardiovasc Endocrinol Metab. 2016; 5(3):102-11. https://doi.org/10.1097/ XCE.0000000000000085 DOI: https://doi.org/10.1097/XCE.0000000000000085

Li J, Song J, Zaytseva YY, Liu Y, Rychahou P, Jiang K, et al. An obligatory role for neurotensin in high-fat-dietinduced obesity. Nature. 2016; 533(7603):411-5. https://doi. org/10.1038/nature17662 DOI: https://doi.org/10.1038/nature17662

Saiyasit N, Chunchai T, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn N, et al. Chronic highfat diet consumption induces an alteration in plasma/ brain neurotensin signaling, metabolic disturbance, systemic inflammation/oxidative stress, brain apoptosis, and dendritic spine loss. Neuropeptides. 2020; 82:102047. https://doi.org/10.1016/j.npep.2020.102047 DOI: https://doi.org/10.1016/j.npep.2020.102047

Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, et al. High‐energy diets may induce a pre‐diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology. 2013; 1(3):495-504. https://doi.org/10.1111/j.2047-2927.2013.00071.x DOI: https://doi.org/10.1111/j.2047-2927.2013.00071.x

Gómez-Elías MD, Rainero Cáceres TS, Giaccagli MM, Guazzone VA, Dalton GN, De Siervi A, et al. Association between high-fat diet feeding and male fertility in high reproductive performance mice. Sci Rep. 2019; 9(1):18546. https://doi.org/10.1038/s41598-019-54799-3 DOI: https://doi.org/10.1038/s41598-019-54799-3

Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. Regul Pept. 2011; 170(1-3):7-17. https://doi. org/10.1016/j.regpep.2011.04.005 DOI: https://doi.org/10.1016/j.regpep.2011.04.005

Ghosh S, Mukherjee S. Testicular germ cell apoptosis and sperm defects in mice upon long‐term high fat diet feeding. J Cell Physiol. 2018; 233(10):6896-909. https://doi. org/10.1002/jcp.26581 DOI: https://doi.org/10.1002/jcp.26581

Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014; 15(4):6184-223. https://doi.org/10.3390/ijms15046184 DOI: https://doi.org/10.3390/ijms15046184

Jarvis S, Gethings LA, Samanta L, Pedroni SM, Withers DJ, Gray N, et al. High fat diet causes distinct aberrations in the testicular proteome. Int J Obes. 2020; 44(9):1958-69. https://doi.org/10.1038/s41366-020-0595-6 DOI: https://doi.org/10.1038/s41366-020-0595-6

Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol. 2008; 109(3- 5):323-30. https://doi.org/10.1016/j.jsbmb.2008.03.004 DOI: https://doi.org/10.1016/j.jsbmb.2008.03.004

Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol. 2010; 205(2):117-31. https://doi.org/10.1677/joe-10-0025 DOI: https://doi.org/10.1677/JOE-10-0025

Kenealy BP, Terasawa E. Hypothalamic control of female reproduction. Oxford Research Encyclopedia of Neuroscience; 2017. https://doi.org/10.1093/ acrefore/9780190264086.013.59 DOI: https://doi.org/10.1093/acrefore/9780190264086.013.59

Fink G. Neuroendocrine regulation of pituitary function: General principles. Neuroendocrinology in Physiology and Medicine. Totowa NJ: Humana Press; 2000. https://doi. org/10.1007/978-1-59259-707-9_7 DOI: https://doi.org/10.1007/978-1-59259-707-9_7

Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000; 404(6778):661-71. https://doi.org/10.1038/35007534 DOI: https://doi.org/10.1038/35007534

Dutta S, Sengupta P, Muhamad S. Male reproductive hormones and semen quality. Asian Pac J Reprod. 2019; 8(5):189-94. https://doi.org/10.4103/2305-0500.268132 DOI: https://doi.org/10.4103/2305-0500.268132

Jia YF, Guo Y, Zhou F, Zhang KS, Wang XW, Lu WH, et al. Expression of Kisspeptin-GnRH system is down-regulated in hypothalamic arcuate nucleus of male rats with highfat diet. Int J Clin Exp. 2017; 10(5):6099-107. https://doi. org/10(5):6099-6107

Suleiman JB, Bakar ABA, Noor MM, Nna VU, Othman ZA, Zakaria Z, et al. Bee bread mitigates downregulation of steroidogenic genes, decreased spermatogenesis, and epididymal oxidative stress in male rats fed with high-fat diet. Am J Physiol Endocrinol Metab. 2021; 321(3):E351- 66. https://doi.org/10.1152/ajpendo.00093.2021 DOI: https://doi.org/10.1152/ajpendo.00093.2021

Browne JA, Yang R, Leir SH, Eggener SE, Harris A. Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod: Basic Sci Reprod Med. 2016; 22(2):69-82. https://doi.org/10.1093/molehr/gav066 DOI: https://doi.org/10.1093/molehr/gav066

Baxendale IR, Cheung S, Kitching MO, Ley SV, Shearman JW. The synthesis of neurotensin antagonist SR 48692 for prostate cancer research. Bioorg Med Chem. 2013; 21(14):4378-87. https://doi.org/10.1016/j.bmc.2013.04.075 DOI: https://doi.org/10.1016/j.bmc.2013.04.075

Mishra S, Mohanty B. Neurotensin modulation of inflammation: An update. Comp Clin Path. 2023; 32(6):1051- 60. https://doi.org/10.1007/s00580-023-03530-w DOI: https://doi.org/10.1007/s00580-023-03530-w

Myers RM, Shearman JW, Kitching MO, Ramos-Montoya A, Neal DE, Ley SV. Cancer, chemistry, and the cell: Molecules that interact with the neurotensin receptors. ACS Chem Biol. 2009; 4(7):503-25. https://doi.org/10.1021/cb900038e DOI: https://doi.org/10.1021/cb900038e

Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 2010; 46(3):212-23. https://doi.org/10.3164/jcbn.09-83 DOI: https://doi.org/10.3164/jcbn.09-83

Steinberg R, Brun P, Fournier M, Souilhac J, Rodier D, Mons G, et al. SR 48692, a non-peptide neurotensin receptor antagonist differentially affects neurotensin-induced behaviour and changes in dopaminergic transmission. Neuroscience. 1994; 59(4):921-9. https://doi.org/10.1016/0306-4522(94)90295-X DOI: https://doi.org/10.1016/0306-4522(94)90295-X

Johnsen SG. The stage of spermatogenesis involved in the testicular-hypophyseal feed-back mechanism in man. Eur J Endocrinol. 1970; 64(2):193-210. https://doi.org/10.1530/ acta.0.0640193 DOI: https://doi.org/10.1530/acta.0.0640193

Bruning JL, Knitz BL. Computational handbook of statistics. USA: Scott, Foresman and Company; 1977.

Ouvrier A, Alves G, Damon-Soubeyrand C, Marceau G, Cadet R, Janny L, et al. Dietary cholesterol-induced posttesticular infertility. PloS One. 2011; 6(11):e26966. https:// doi.org/10.1371/journal.pone.0026966 DOI: https://doi.org/10.1371/journal.pone.0026966

Saez F, Whitfield M, Drevet JR. Impairment of sperm maturation and capacitation due to diet‐dependent cholesterol overload. Androlog. 2019; 7(5):654-61. https:// doi.org/10.1111/andr.12634 DOI: https://doi.org/10.1111/andr.12634

Mah PM, Wittert GA. Obesity and testicular function. Mol Cell Endocrinol. 2010; 316(2):180-6. https://doi. org/10.1016/j.mce.2009.06.007 DOI: https://doi.org/10.1016/j.mce.2009.06.007

Ghosh S. Male reproduction and Cannabis: A state of art review. Int J Pharm Sci Invent. 2021:04-09. https://doi. org/10.35629/6718-10030409

Nna VU, Bakar ABA, Ahmad A, Eleazu CO, Mohamed M. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants. 2019; 8(10):465. https://doi. org/10.3390/antiox8100465 DOI: https://doi.org/10.3390/antiox8100465

Adamkovicova M, Toman R, Cabaj M, Massanyi P, Martiniakova M, Omelka R, et al. Effects of subchronic exposure to cadmium and diazinon on testis and epididymis in rats. Sci World J. 2014; 2014. https://doi. org/10.1155/2014/632581 DOI: https://doi.org/10.1155/2014/632581

Soudamani S, Malini T, Balasubramanian K. Effects of streptozotocin-diabetes and insulin replacement on the epididymis of prepubertal rats: Histological and histomorphometric studies. Endocr Res. 2005; 31(2):81-98. https://doi.org/10.1080/07435800500229193 DOI: https://doi.org/10.1080/07435800500229193

Minabe S, Iwata K, Tsuchida H, Tsukamura H, Ozawa H. Effect of diet-induced obesity on kisspeptin-neurokinin B-dynorphin A neurons in the arcuate nucleus and luteinizing hormone secretion in sex hormone-primed male and female rats. Peptides. 2021; 142:170546. https:// doi.org/10.1016/j.peptides.2021.170546 DOI: https://doi.org/10.1016/j.peptides.2021.170546

Mulè F, Serio R, Postorino A, Vetri T, Bonvissuto F. Antagonism by SR 48692 of mechanical responses to neurotensin in rat intestine. Br J Pharmacol. 1996; 117(3):488. https://doi.org/10.1111%2Fj.1476-5381.1996.tb15216.x DOI: https://doi.org/10.1111/j.1476-5381.1996.tb15216.x

Gui X, DeGolier TF, Duke GE, Carraway RE. Neurotensin elevates hepatic bile acid secretion in chickens by a mechanism requiring an intact enterohepatic circulation. Comp Biochem Physiol C Pharmacol Toxicol Enocrinol. 2000; 127(1):61-70. https://doi.org/10.1016/S0742- 8413(00)00126-2 DOI: https://doi.org/10.1016/S0742-8413(00)00126-2

Miller LA, Cochrane DE, Carraway RE, Feldberg RS. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Br J Pharmacol. 1995; 114(7):1466. https:// doi.org/10.1111%2Fj.1476-5381.1995.tb13371.x DOI: https://doi.org/10.1111/j.1476-5381.1995.tb13371.x

Monfared AL. Correlation of serum lipid profile with histological and seminal parameters of testis in the goat. Int J Fertil Steril. 2013; 7(2):122.

Hamad Zubi ZB, Hamad Alfarisi HA. Hyperlipidemia and male infertility. Egypt J Basic Appl Sci. 2021; 8(1):385-96. https://doi.org/10.1080/2314808X.2021.1977080 DOI: https://doi.org/10.1080/2314808X.2021.1977080

Kh HR, AL-Musawi JE. Histological study of alteration in testes and epididymis of domestic rabbits caused by Tribulus terrestris and vitamin E. Arch Raz Inst. 2023; 78(4):1239. https://doi.org/10.22092/ari.2022.359896.2506 DOI: https://doi.org/10.32592/ARI.2023.78.4.1239

Panday G, Jain GC. Molybdenum-induced oxidative stress and histopathological alterations in the epididymis. Toxicol Int. 2024;31(2):265-73. https://doi.org/10.18311/ti/2024/ v31i2/34727 DOI: https://doi.org/10.18311/ti/2024/v31i2/34727

Gully D, Canton M, Boigegrain R, Jeanjean F, Molimard JC, Poncelet M, et al. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci U S A. 1993; 90(1):65-9. https://doi.org/10.1073/pnas.90.1.65 DOI: https://doi.org/10.1073/pnas.90.1.65