In Vitro Evaluation of Cytotoxicity Induced by Indoxacarb and its Amelioration with Cassia fistula Bark Extract
DOI:
https://doi.org/10.18311/ti/2024/v31i3/33858Keywords:
Biochemical Parameters, Cassia fistula, Cytotoxicity, Indoxacarb, MBDKAbstract
The primary objective of the study is to evaluate the cytotoxic effect and biochemical alteration on exposure to the Indoxacarb (IDC) in the Madin-Darby Bovine Kidney (MDBK) cell line and its amelioration by Ethanolic Bark Extract of Cassia fistula (EBECF). The MTT assay was used to study the cell viability and determine the IC50 value. The cells were further treated with IC25, IC12.5 and IC6.25 values of IDC alone and in combination with EBECF for 24, 48 and 72 hours. IDC-induced cytotoxicity was evident by cellular morphological changes such as rounding of cells, cellular swelling, blebs formation, nuclear degradation, intracytoplasmic changes and loss of intracytoplasmic contents. The biochemical alteration was observed as a significant increase (p<0.05) in the levels of Lipid Peroxidation (LPO) and cytotoxicity marker enzymes namely Lactate Dehydrogenase (LDH), Alkaline Phosphatase (ALKP), Acid Phosphatase (ACP) and Creatine Kinase (CK). These changes were dose-dependent in IDC-treated groups. EBECF intervention in IDC-treated cells ameliorated the toxicity against lower concentrations. Thus, the present study suggested that C. fistula bark has the potential to protect the cells from IDC-mediated toxicity to a limited extent.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zarzo liani, Suresh Kumar Sharma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-26
Published 2024-08-05
References
EPA US. Pesticides- fact sheet for Indoxacarb. In: Office of prevention on pesticides and toxic substances; 2000. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-067710_30-Oct-10.pdf
Poletta GL, Larriera A, Kleinsorge E, Mudry MD. Genotoxicity of the herbicide formulation roundup (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the comet assay and the micronucleus test. Mutat Res. 2009; 672:95-102. PMid: 19022394. https://doi.org/10.1016/j.mrgentox.2008.10.007 PMid:19022394. DOI: https://doi.org/10.1016/j.mrgentox.2008.10.007
Rajmohan KS, Chandrasekaran R, Varjani S. A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol. 2020; 2(60):125-38. PMid: 32255845 PMCid: PMC7105532. https://doi.org/10.1007/s12088-019-00841-x PMid:32255845 PMCid: PMC7105532. DOI: https://doi.org/10.1007/s12088-019-00841-x
Wenbo H, Chunling F, Huijuan Y, Jian C, Hanhong X, Guang S, Dingxin J. Design, synthesis and structure-activity relationship of indoxacarb analogs as voltage-gated sodium channel blocker. Bioorg Med Chem Lett. 2015; 25:4576-9. PMid: 26338361. https://doi.org/10.1016/j.bmcl.2015.08.058 PMid:26338361. DOI: https://doi.org/10.1016/j.bmcl.2015.08.058
Sandeep K, Mukhopadhyay CS, Arora JS, Sethi RS. Indoxacarb interaction alters immunotoxic and genotoxic potential of endotoxin. J Pestic Sci. 2016; 41(3):65-70. PMid: 30363127 PMCid: PMC6140663. https://doi.org/10.1584/jpestics.D16-012 PMid:30363127 PMCid: PMC6140663. DOI: https://doi.org/10.1584/jpestics.D16-012
Nahak G, Sahu RK. In vitro antioxidative activity of Azadirachta indica and Melia Azadirachta indica and Melia azedarach leaves by DPPH scavenging assay. Nat Sci Sleep. 2010; 8(4):22-8.
Siddhuraju P, Mohan PS, Becker K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem. 2002; 79(1):61-7. https://doi.org/10.1016/S0308-8146(02)00179-6 DOI: https://doi.org/10.1016/S0308-8146(02)00179-6
Manonmani G, Bhavapriya V, Kalpana S, Govindasamy S, Apparanantham T. Antioxidant activity of Cassia fistula (Linn.) flowers in alloxan induced diabetic rats. J Ethnopharmacol. 2005; 97(1):39-42. PMid: 15652272. https://doi.org/10.1016/j.jep.2004.09.051 PMid:15652272. DOI: https://doi.org/10.1016/j.jep.2004.09.051
Mosmann T. Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2):55-63. PMid: 6606682. https://doi.org/10.1016/0022-1759(83)90303-4 PMid:6606682. DOI: https://doi.org/10.1016/0022-1759(83)90303-4
Singh H, Lonare MK, Sharma M, Udheya R, Singla S, Dumka VK. Toxicological sequelae of pesticide combinations exposure in buffalo mesenchymal stem cells under in vitro. Toxicol Int. 2022; 29 (1):1-14. https://doi.org/10.18311/ti/2022/v29i1/24000 DOI: https://doi.org/10.18311/ti/2022/v29i1/24000
Fay PC, Cook CG, Wijesiriwardana N, Tore G, Comtet, L, Carpentier A, Shih B, Freimanis G, Haga IR, Beard PM. Madin-darby bovine kidney (MDBK) cells are a suitable cell line for the propagation and study of the bovine poxvirus lumpy skin disease virus. J Virol Methods. 2020; 285:113943. https://doi.org/10.1016/j.jviromet.2020.113943 PMid:32707050 PMCid: PMC7561597. DOI: https://doi.org/10.1016/j.jviromet.2020.113943
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolisation in cell death and survival. Oncotarget. 2016; 7(34):55863-89. https://doi.org/10.18632/oncotarget.10150 PMid:27331412 PMCid: PMC5342458. DOI: https://doi.org/10.18632/oncotarget.10150
Haschek WM, Rousseaux CG, Wallig MA. Manifestations of toxic cell injury: cell injury/death and chemical carcinogenesis. Fundamentals of Toxicologic Pathology. 2nd ed. Academic Press; 2010; 9-10. https://doi.org/10.1016/B978-0-12-370469-6.00002-7 DOI: https://doi.org/10.1016/B978-0-12-370469-6.00002-7
He D, Lu N, Zhou Z. Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol. 2009; 21(6):900-12. https://doi.org/10.1016/j.ceb.2009.08.008 PMid:19781927 PMCid: PMC2787732. DOI: https://doi.org/10.1016/j.ceb.2009.08.008
Nam TG. Lipid peroxidation and its toxicological implications. Toxicol Res. 2011; 1(27):1-6. https://doi.org/10.5487/TR.2011.27.1.001 PMid:24278542 PMCid: PMC3834518. DOI: https://doi.org/10.5487/TR.2011.27.1.001
Repetto M, Semprine J, Boveris A. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. Lipid Peroxidation. 2012; 3-30. https://doi.org/10.5772/45943 DOI: https://doi.org/10.5772/45943
Mudaraddi TY, Potadar RR, Kaliwal BB. Indoxacarb induces liver oxidative stress in Swiss Albino mice. Eur J of Exp Biol. 2012; 2(1):180-6.
Bhakta T, Banerjee S, Mandal SC, Maity TK, Saha BP, Pal M. Hepatoprotective activity of Cassia fistula leaf extract. Phytomedicine. 2001; 8(3):220-4. https://doi.org/10.1078/0944-7113-00029 PMid:11417916.
Kumar RMSJ, Jeyapriyadharshini S, Roy AA, Antony LSI, Manikkam R. Triterpenoids from Cassia fistula L. regulate p53 and ERK2 genes to induce apoptosis in HT-29 colon cancer cells. Biocatal Agric Biotechnol. 2019; 21:1878-81. https://doi.org/10.1016/j.bcab.2019.101286 DOI: https://doi.org/10.1016/j.bcab.2019.101286
Farhana A, Lappin SL. Biochemistry, lactate dehydrogenase. In StatPearls. StatPearls Publishing. 2021. PMid: 32491468. https://pubmed.ncbi.nlm.nih.gov/32491468/
Divyashree J, Tomar S, Singh AP. Analysis of effects of different pesticides on mammalian system. Int J Environ Sci Technol. 2023; 21:285-92. https://doi.org/10.1007/s13762-023-04849-1 DOI: https://doi.org/10.1007/s13762-023-04849-1
Maiza A, Aribi N, Smagghe G, Kilani-Morakchi, S, Bendjedid M, Soltani N. Sublethal effects on reproduction and biomarkers by spinosad and indoxacarb in cockroaches Blattella germanica. Bull Insectology. 2013; 66(1):11-20.
Lowe D, Sanvictores T, John S. Alkaline phosphatase. In StatPearls. StatPearls Publishing; 2020. PMid: 29083622. https://www.ncbi.nlm.nih.gov/books/NBK459201/
Bhakta T, Banerjee S, Mandal SC, Maity TK, Saha BP, Pal M. Hepatoprotective activity of Cassia fistula leaf extract. Phytomedicine. 2001; 8(3):220-4. https://doi.org/10.1078/0944-7113-00029 PMid:11417916. DOI: https://doi.org/10.1078/0944-7113-00029
Gamil WE, Mariy FM, Youssef LA, Abdel HSM. Effect of Indoxacarb on some biological and biochemical aspects of Spodoptera littoralis (Boisd.) larvae. Ann Agric Sci. 2011; 56(2):121-6. https://doi.org/10.1016/j.aoas.2011.07.005 DOI: https://doi.org/10.1016/j.aoas.2011.07.005
Aujla RS, Patel R. Creatine phosphokinase. In StatPearls. StatPearls Publishing; 2021. PMid: 31536231. https://pubmed.ncbi.nlm.nih.gov/31536231/
Baldissera MD, Baldissertto B. Creatine kinase activity as an indicator of energetic impairment and tissue damage in fish: A review. Fishes. 2023; 8(2):59. https://doi.org/10.3390/fishes8020059 DOI: https://doi.org/10.3390/fishes8020059
Hassan HF, Toni NDM, Meligi NM. Toxicity induced by indoxacarb exposure in male Albino rats and the possible protective effects of vitamin C and zinc. Egypt Acad J Biol Sci C Physiol Mol Biol. 2021; 13(2):155-76. https://doi.org/10.21608/eajbsc.2021.205358 DOI: https://doi.org/10.21608/eajbsc.2021.205358
Kanwal A, Azeem F, Nadeem H, Ashfaq UA, Aadil RM, Kober AKMH, Rajoka MS, Rasol I. Molecular mechanisms of Cassia fistula against epithelial ovarian cancer using network pharmacology and molecular docking approaches. Pharmaceutic. 2022; 14(9):1970. https://doi.org/10.3390/pharmaceutics14091970 PMid:36145718 PMCid: PMC9500712. DOI: https://doi.org/10.3390/pharmaceutics14091970