Toxicological Impact of Nanoparticles on Reproductive System: A Review
DOI:
https://doi.org/10.18311/ti/2023/v30i4/33893Keywords:
Apoptosis, Nanoparticles, Oxidative Stress, Reproductive ToxicityAbstract
The widespread utilization of Nanoparticles (NPs) in industrial, medical, and consumer goods prompted worries about their possible toxicity. Growing concerns towards individual well- being may however impede the widespread use of this intriguing invention. Although people are exposed to nanoparticles from an early age, but it has increased significantly in the past several years owing to anthropogenic sources of these nanoparticles. The consequences of nanoparticles on the male and female reproductive system are addressed in this review. NPs can infiltrate the epithelial barrier, placental barrier, and blood-testis-barrier and then amass in reproductive organs. NPs amassing impairs organs such as the testis, ovaries and uterus via obliterating Leydig cells, Sertoli cells and Germ Cells, exacerbating reproductive system impairment which unduly affects the quality, amount, morphology, and mobility of sperms or decreasing the amount of egg maturation and distress the folliculogenesis mainly primary and secondary follicular development. NPs may also alter secreted hormone levels and induce effects on sexual behavior. These detrimental effects correlate to nanoparticle composition, surface modification, dosage, mode of transmission and animal species. The current review, however, concentrates on nanoparticles induced toxicological issues and their potential toxicity mechanisms such as oxidative damage, apoptosis, inflammation as well as genotoxicity. NPs may enhance inflammatory response, and oxidative stress, and produce ROS damage, which leads to cytotoxicity at both molecular and genetic levels.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jitender Kumar Bhardwaj, Vishavjeet Rathee
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-11-01
Published 2023-12-11
References
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007; 2(4):MR17-71. https://doi.org/10.1116/1.2815690 DOI: https://doi.org/10.1116/1.2815690
Joshi SC, Kaushik U. Nanoparticles and reproductive toxicity: An overview. Res J Pharm Biol Chem Sci. 2013; 4(2):1396-410.
Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019; 12(7):908- 31. https://doi.org/10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Matsoukas T, Desai T, Lee K. Engineered nanoparticles and their applications. J Nanomater. 2015; 651273. https:// doi.org/10.1155/2015/651273 DOI: https://doi.org/10.1155/2015/651273
Patra JK, Das G, Fraceto FL, Campos ERV, Torres RPM, Torres ASL, Torres DAL, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018; 16(1):1-33. https://doi.org/10.1186/ s12951-018-0392-8 DOI: https://doi.org/10.1186/s12951-018-0392-8
Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr. MF, Rejeski D, Hull MS. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015; 6(1):1769-80. https://doi.org/10.3762/bjnano.6.181 DOI: https://doi.org/10.3762/bjnano.6.181
Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol, Toxicol Oncol. 2018; 37(3). https://doi.org/10.1615/JEnvironPathol ToxicolOncol.2018026009 DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
Khan HA, Shanker R. Toxicity of nanomaterials. BioMed Research International. 2015. https://doi. org/10.1155/2015/521014 DOI: https://doi.org/10.1155/2015/521014
Choi SJ, Paek HJ, Yu J. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells. Int J Nanomed. 2015; 10:3217–29. https://doi.org/10.2147/IJN.S82061 DOI: https://doi.org/10.2147/IJN.S82061
Rivas-Garcia L, Quiles JL, Varela-Lopez A, Giampieri F, Battino M, Bettmer J, Bayon MM, Llopis J, Sanchez-Gonzalez C. Ultra-small iron nanoparticles target mitochondria inducing autophagy, acting on mitochondrial DNA and reducing respiration. Pharmaceutics. 2021; 13(1):90. https://doi.org/10.3390/pharmaceutics13010090 DOI: https://doi.org/10.3390/pharmaceutics13010090
Hussein M, Ali HA, Saadeldin IM, Ahmed MM. Quercetin alleviates zinc oxide nano reprotoxicity in male albino rats. J Biochem Mol Toxicol. 2016; 30(10):489-96. https://doi. org/10.1002/jbt.21812 DOI: https://doi.org/10.1002/jbt.21812
Jorgensen N, Meyts RDE, Main KM, Skakkebaek NE. Testicular dysgenesis syndrome comprises some but not all cases of hypospadias and impaired spermatogenesis. Int J Androl. 2010; 33(2):298-303. https://doi.org/10.1111/ j.1365-2605.2009.01050.x DOI: https://doi.org/10.1111/j.1365-2605.2009.01050.x
Di Bona KR, Xu Y, Gray M, Fair D, Hayles H, Milad L, Montes A, Sherwood J, Bao Y, Rasco JF. Short-and longterm effects of prenatal exposure to iron oxide nanoparticles: Influence of surface charge and dose on developmental and reproductive toxicity. Int J Mol Sci. 2015; 16(12):30251-68. https://doi.org/10.3390/ijms161226231 DOI: https://doi.org/10.3390/ijms161226231
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomed. 2018; 13:8487-506. https://doi.org/10.2147/ IJN.S170723 DOI: https://doi.org/10.2147/IJN.S170723
Ealia SAM, Saravankumar MP. A review of the classification, characterization, and synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering. 2017; 263(3):032019. https://doi. org/10.1088/1757-899X/263/3/032019 DOI: https://doi.org/10.1088/1757-899X/263/3/032019
Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014; 9(1):1- 13. https://doi.org/10.1186/1556- 276X-9-393 DOI: https://doi.org/10.1186/1556-276X-9-393
Tiwari DK, Behari J, Sen P. Application of nanoparticle in wastewater treatment. World Appl Sci J. 2008; 3(3):417-33.
Salavati-Niasari M, Davar F, Mir N. 2008. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. 2008; 27(17):3514-8. https://doi.org/10.1016/j.poly.2008.08.020 DOI: https://doi.org/10.1016/j.poly.2008.08.020
Bakare AA, Udoakang AJ, Anifowoshe AT, Fadoju OM, Ogunsuyi OI, Alabi OA, Alimba CG, Oyewemi IT. Genotoxicity of titanium dioxide nanoparticles using the mouse bone marrow micronucleus and sperm morphology assays. Journal of Pollution Effects and Control. 2016; 1-7. https://doi.org/10.4172/2375-4397.1000156 DOI: https://doi.org/10.4172/2375-4397.1000156
Hassanpour P, Panahi, Y, Ebrahimi-Kalan, A, Akbarzadeh A, Davaran S, Nasibova AN, Khalilov R, Kavetskyy T. Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett. 2018; 13(9):1227-31. https://doi.org/10.1049/mnl.2018.5070 DOI: https://doi.org/10.1049/mnl.2018.5070
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020; 8:990. https://doi.org/10.3389/fbioe.2020.00990 DOI: https://doi.org/10.3389/fbioe.2020.00990
Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009; 6(5):1388-401. https://doi.org/10.1021/mp900056g DOI: https://doi.org/10.1021/mp900056g
Yousef MI, Al-hamadani M, Kamel M. Reproductive toxicity of aluminum oxide nanoparticles and zinc oxide nanoparticles in male rats. Nanoparticle. 2019; 1(1):3. https://doi.org/10.35702/nano.10003 DOI: https://doi.org/10.35702/nano.10003
Sahoo S, Maiti M, Ganguly A, Jacob George J, Bhowmick AK. Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. J Appl Polym Sci. 2007; 105(4):2407-15. https://doi.org/10.1002/app.26296 DOI: https://doi.org/10.1002/app.26296
Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov Today. 2017; 22(12):1825-34. https://doi.org/10.1016/j. drudis.2017.08.006 DOI: https://doi.org/10.1016/j.drudis.2017.08.006
Kanakaraj SN, Hsieh YY, Adusei PK, Homan B, Fang Y, Zhang G, Mishra S, Gbordzoe S, Shanov V. Nitrogen-doped CNT on CNT hybrid fiber as a current collector for highperformance Li-ion capacitors. Carbon. 2019; 149:407-18. https://doi.org/10.1016/j.carbon.2019.04.032 DOI: https://doi.org/10.1016/j.carbon.2019.04.032
Zhang XF, Choi YJ, Han JW, Kim E, Park JH, Gurunathan S, Kim JH. Differential nano reprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Intl J Nanomed. 2015; 10(1):1335-57. https:// doi.org/10.2147/IJN.S76062 DOI: https://doi.org/10.2147/IJN.S76062
Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Akbarzadeh A, Davaran S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res Lett. 2012; 7(1):1-14. https://doi.org/10.1186/1556-276X-7-480 DOI: https://doi.org/10.1186/1556-276X-7-480
Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010; 411(23-24):1841-8. https://doi.org/10.1016/j.cca.2010.08.016 DOI: https://doi.org/10.1016/j.cca.2010.08.016
Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, Zande MVD, Gac SL, Krystek P, Peters RJB, Reitjens IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol. 2015; 89(9):1469-95. https://doi.org/10.1007/ s00204-015-1518-5 DOI: https://doi.org/10.1007/s00204-015-1518-5
Huang Y, Mei L, Chen X, Wang Q. Recent developments in food packaging based on nanomaterials. Nanomaterials. 2018; 8(10):830. https://doi.org/10.3390/nano8100830 DOI: https://doi.org/10.3390/nano8100830
Sergent JA, Paget V, Chevillard S. Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann Occup Hyg. 2012; 56(5):622-30. https://doi.org/ 10.1093/annhyg/mes005.
Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control. 2006; 34(10):98- 110. https://doi.org/10.1016/j.ajic.2006.05.295 DOI: https://doi.org/10.1016/j.ajic.2006.05.295
Pujalte I, Dieme D, Haddad S, Serventi AM, Bouchard M. Toxicokinetics of Titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol Lett. 2017; 265:77-85. https://doi.org/10.1016/j.toxlet.2016.11.014 DOI: https://doi.org/10.1016/j.toxlet.2016.11.014
Mc Carthy J, Inkielewicz-Stepniak I, Corbalan JJ, Radomski MW. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol. 2012; 25(10):2227-35. https://doi.org/10.1021/tx3002884 DOI: https://doi.org/10.1021/tx3002884
Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res. 2012; 14(9):1-11. https://doi.org/10.1007/s11051-012- 1109-9 DOI: https://doi.org/10.1007/s11051-012-1109-9
Lee SH, Lee HR, Kim YR, Kim MK. Toxic response of zinc oxide nanoparticles in human epidermal keratinocyte HaCaT cells. Toxicol Environ Health Sci. 2012; 4(1):14-8. https://doi.org/10.1007/s13530-012-0112-y DOI: https://doi.org/10.1007/s13530-012-0112-y
Pawar K, Kaul G. Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro. Toxicol Ind Health. 2014; 30(6):520- 33. https://doi.org/10.1177/0748233712462475 DOI: https://doi.org/10.1177/0748233712462475
Gao G, Ze Y, Li B, Zhao X, Zhang T, Sheng L, Hu R, Gui S, Sang X, Sun Q, Cheng J, Cheng Z, Wang L, Tang M, Hong F. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater. 2012; 243:19- 27. https://doi.org/10.1016/j.jhazmat.2012.08.049 DOI: https://doi.org/10.1016/j.jhazmat.2012.08.049
Sun J, Zhang Q, Wang Z, Yan B. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int J Mol Sci. 2013; 14(5):9319-37. https://doi. org/10.3390/ijms14059319 DOI: https://doi.org/10.3390/ijms14059319
Bhardwaj JK, Panchal H, Saraf P. Ameliorating effects of natural antioxidant compounds on female infertility: A review. Reprod Sci. 2021; 28(5):1227-56. https://doi. org/10.1007/s43032-020-00312-5 DOI: https://doi.org/10.1007/s43032-020-00312-5
Agarwal A, Tadros H, Panicker A, Tvrda E. Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease. 2016; 221-52. https://doi. org/10.1002/9781118832431.ch15 DOI: https://doi.org/10.1002/9781118832431.ch15
Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015; 5(3):1163-80. https://doi. org/10.3390/nano5031163 DOI: https://doi.org/10.3390/nano5031163
Mcshan D, Ray PC, Yu H. Molecular toxicity mechanism of nano silver. J Food Drug Anal. 2014; 22(1):116-27. https:// doi.org/10.1016/j.jfda.2014.01.010 DOI: https://doi.org/10.1016/j.jfda.2014.01.010
Gurr JR, Wang AS, Chen CH, Jan, KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005; 213(1-2):66-73. https://doi.org/10.1016/j. tox.2005.05.007 DOI: https://doi.org/10.1016/j.tox.2005.05.007
Ramkumar KM, Manjula C, GnanaKumar G, Kanjwal MA, Sekar TV, Paulmurugan R, Rajaguru P. Oxidative stressmediated cytotoxicity and apoptosis induction by TiO2 nanofibers in HeLa cells. Eur J Pharm Biopharm. 2012; 81(2):324-33. https://doi.org/10.1016/j.ejpb.2012.02.013 DOI: https://doi.org/10.1016/j.ejpb.2012.02.013
Koppers AJ, Iuliis DGN, Finnie JM, Mclaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008; 93(8):3199-207. https://doi. org/10.1210/jc.2007-2616 DOI: https://doi.org/10.1210/jc.2007-2616
Courbiere B, Auffan M, Rollais R, Tassistro V, Bonnefoy A, Botta A, Rose J, Orsiere T, Perrin J. Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes. Int J Mol Sci. 2013; 14(11):21613-28. https://doi.org/10.3390/ijms141121613 DOI: https://doi.org/10.3390/ijms141121613
Preaubert L, Courbiere B, Achard V, Tassistro V, Greco F, Orsiere T, Bottero JY, Rose J, Auffan M, Perrin J. Cerium dioxide nanoparticles affect in vitro fertilization in mice. Nanotoxicology. 2016; 10(1):111-7. https://doi.org/10.3109 /17435390.2015.1030792 DOI: https://doi.org/10.3109/17435390.2015.1030792
Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005; 113(11):1555- 60. https:// doi.org/10.1289/ehp.8006 DOI: https://doi.org/10.1289/ehp.8006
Chen M, von Mikecz A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res. 2005; 305(1):51-62. https://doi.org/10.1016/j.yexcr.2004.12.021
Meena R, Kajal K, Paulraj R. Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Appl Biochem Biotechnol. 2015; 175(2):825-40. https://doi.org/10.1007/s12010-014-1299-y DOI: https://doi.org/10.1007/s12010-014-1299-y
Conrad M, Moreno SG, Sinowatz F, Ursini F, Kolle S, Roveri A, Brielmeier M, Wurst W, Maiorino M, Bornkamm GW. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol. 2005; 25(17):7637- 44. https://doi.org/10.1128/MCB.25.17.7637- 7644.2005 DOI: https://doi.org/10.1128/MCB.25.17.7637-7644.2005
d’Amora M, Raffa, V, De Angelis, F, Tantussi, F. Toxicological profile of plasmonic nanoparticles in Zebrafish Model. Int J Mol Sci. 2021; 22(12):6372. https://doi.org/10.3390/ ijms22126372 DOI: https://doi.org/10.3390/ijms22126372
Bhardwaj JK, Mittal M, Saraf P. Effective attenuation of glyphosate‐induced oxidative stress and granulosa cell apoptosis by vitamins C and E in caprines. Mol Reprod Dev. 2019; 86(1):42-52. https://doi.org/10.1002/mrd.23084 DOI: https://doi.org/10.1002/mrd.23084
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4):495- 516. https://doi. org/10.1080/01926230701320337 DOI: https://doi.org/10.1080/01926230701320337
Li C, Taneda S, Taya K, Watanabe G, Li X, Fujitani Y, Tamie N, Suzuki AK. Effects of in utero exposure to nanoparticlerich diesel exhaust on testicular function in immature male rats. Toxicol Lett. 2009; 185(1):1-8. https://doi. org/10.1016/j.toxlet.2008.11.012 DOI: https://doi.org/10.1016/j.toxlet.2008.11.012
Alarifi S, Ali H, Saad Alkahtani MSA. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int J Nanomed. 2017; 12:4541. https://doi.org/10.2147/IJN.S139326 DOI: https://doi.org/10.2147/IJN.S139326
Li C, Li X, Suzuki AK, Zhang Y, Fujitani Y, Nagaoka K, Watanabe G, Taya K. Effects of exposure to nanoparticle rich diesel exhaust on pregnancy in rats. J Reprod Dev. 2013; 59(2):145-50. https://doi.org/10.1262/jrd.2012-145 DOI: https://doi.org/10.1262/jrd.2012-145
Meena R, Rani M, Pal R, Rajamani P. Nano-TiO2-induced apoptosis by oxidative stress- mediated DNA damage and activation of p53 in human embryonic kidney cells. Appl Biochem Biotechnol. 2012; 167(4):791-808. https://doi. org/10.1007/s12010-012-9699-3 DOI: https://doi.org/10.1007/s12010-012-9699-3
Horie M, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura A, Kinugasa S, Yamamoto K, Niki E, Yoshida Y, Iwahashi H. Chromium (III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ toxicol. 2013; 28(2):61- 75. https://doi.org/10.1002/ tox.20695 DOI: https://doi.org/10.1002/tox.20695
Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Rehman ZU, Farmanullah F, Huo LJ. Toxicity of nanoparticles on the reproductive system in animal models: A review. Front Pharmacol. 2017; 8:606. https:// doi.org/10.3389/fphar.2017.00606 DOI: https://doi.org/10.3389/fphar.2017.00606
Morgan AM, Ibrahim MA, Noshy PA. Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochem Biophys Res Commun. 2017; 486(2):595-600. https://doi. org/10.1016/j.bbrc.2017.03.098 DOI: https://doi.org/10.1016/j.bbrc.2017.03.098
Iftikhar M, Noureen A, Uzair M, Jabeen F, Abdel Daim M, Cappello T. Perspectives of nanoparticles in male infertility: Evidence for induced abnormalities in sperm production. Int J Environ Res Public Health. 2021; 18(4):1758.https:// doi.org/10.3390/ijerph18041758 DOI: https://doi.org/10.3390/ijerph18041758
Pinho AR, Rebelo S, Pereira MDL. The impact of zinc oxide nanoparticles on male (in) fertility. Materials. 2020; 13(4):849. https://doi.org/10.3390/ma13040849 DOI: https://doi.org/10.3390/ma13040849
Kong L, Tang M, Zhang T. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci. 2014; 15(11):21253-69. https://doi.org/10.1016/j. scitotenv.2019.07.107 DOI: https://doi.org/10.3390/ijms151121253
Liu XQ, Zhang HF, Zhang WD, Zhang PF, Hao YN, Song R, Li L, Feng YN, Hao ZH, Shen W, Min LJ, Yang HD, Zhao Y. Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles. Toxicol Lett. 2016; 256:19-32. https://doi.org/10.1016/j.toxlet.2016.05.007 DOI: https://doi.org/10.1016/j.toxlet.2016.05.007
Farshad O, Heidari R, Zamiri MJ, Retana-Marquez S, Khalili M, Ebrahimi M, Jamshidzadeh A, Ommati MM. Spermatotoxic effects of single-walled and multi-walled carbon nanotubes on male mice. Front Vet Sci. 2020; 7:591558. https://doi.org/10.3389/fvets.2020.591558 DOI: https://doi.org/10.3389/fvets.2020.591558
Chen M, von Mikecz A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res. 2005; 305(1):51-62. https://doi.org/10.1016/j.yexcr.2004.12.021 DOI: https://doi.org/10.1016/j.yexcr.2004.12.021
Abu-Taweel GM, Albetran HM, Al-Mutary MG, Ahmad M, Low IM. Alleviation of silver nanoparticle-induced sexual behavior and testicular parameters dysfunction in male mice by yttrium oxide nanoparticles. Toxicol Rep. 2021; 8:1121-30. https://doi.org/10.1016/j.toxrep.2021.05.014 DOI: https://doi.org/10.1016/j.toxrep.2021.05.014
Dziendzikowska K, Krawczynska A, Oczkowski M, Krolikowski T, Brzoska K, Lankoff A, Dziendzikowski M, Stepkowski T, Kruszewski M, Gromadzka-Ostrowska J. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats. Toxicol Applied Pharmacol. 2016; 313:35-46. https://doi.org/10.1016/j. taap.2016.10.013 DOI: https://doi.org/10.1016/j.taap.2016.10.013
Knez J. Endocrine-disrupting chemicals and male reproductive health. Reprod Biomed Online. 2013; 26(5):440-8. https://doi.org/10.1016/j.rbmo.2013.02.005 DOI: https://doi.org/10.1016/j.rbmo.2013.02.005
Zhou Q, Yue Z, Li Q, Zhou, R, Liu L. Exposure to PbSe nanoparticles and male reproductive damage in a rat model. Environ Sci Technol. 2019; 53(22):13408-16. https://doi. org/10.1021/acs.est.9b03581 DOI: https://doi.org/10.1021/acs.est.9b03581
Kong L, Hu W, Gao X, Wu Y, Xue Y, Cheng K, Tang M. Molecular mechanisms underlying nickel nanoparticle induced rat Sertoli-germ cells apoptosis. Sci Total Environ. 2019; 692:240-8. https://doi.org/10.1002/tox.22288 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.107
Baki ME, Miresmaili SM, Pourentezari M, Amraii E, Yousefi V, Spenani HR, Talebi AR, Anwari M, Fazilati M, Fallah AA, Mangoli E. Effects of silver nano-particles on sperm parameters, number of Leydig cells and sex hormones in rats. Iran J Reprod Med. 2014; 12(2):139.
Liu Y, Li X, Xiao S, Liu X, Chen X, Xia Q, Lei S, Li H, Zhong Z, Xiao K. The effects of gold nanoparticles on Leydig cells and male reproductive function in mice. Int J Nanomed. 2020; 15:9499-514. https://doi.org/10.2147/ IJN.S276606
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential cytotoxicity of different sizesof graphene oxide nanoparticles in Leydig (TM3) and Sertoli (TM4) cells. Nanomaterials. 2019; 9(2):139. https://doi.org/10.3390/ nano9020139 DOI: https://doi.org/10.3390/nano9020139
Al-Bairuty GA, Taha MN. Effects of copper nanoparticles on reproductive organs of male albino rats. Int J Sci Technol. 2016; 11(3):17-24. https://doi.org/10.12816/0034940
Hong F, Si W, Zhao X, Wang L, Zhou Y, Chen M, Ge Y, Zhang Q, Wang Y, Zhang J. TiO2 nanoparticle exposure decreases spermatogenesis via biochemical dysfunctions in the testis of male mice. J Agric Food Chem. 2015; 63(31):7084-92. https://doi.org/10.1166/jbn.2020.2926
Aslani F, Sebastian T, Keidel M, Frohlich S, Elsasser HP, Schuppe HC, Klug J, Mahavadi P, Fijak M, Bergmann M, Meinhardt A, Bhushan S. Resistance to apoptosis and autophagy leads to enhanced survival in Sertoli cells. Mol Hum Reprod. 2017; 23(6):370-80. https://doi.org/10.1093/molehr/gax022 DOI: https://doi.org/10.1093/molehr/gax022
Zirkin BR, Papadopoulos V. Leydig cells: Formation, function, and regulation. Biol Reprod. 2018; 99(1):101-11. https://doi.org/10.1093/biolre/ioy059 DOI: https://doi.org/10.1093/biolre/ioy059
Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki KI, Nihei Y, Takeda K. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol In Vitro. 2008; 22(8):1825- 31. https://doi.org/10.1016/j.tiv.2008.08.009 DOI: https://doi.org/10.1016/j.tiv.2008.08.009
Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. Journal of Health Science. 2009; 55(1):95- 102. https://doi. org/10.1248/jhs.55.95 DOI: https://doi.org/10.1248/jhs.55.95
Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, Takeda K, Shibamoto T. Effect of nanoparticles on the male reproductive system of mice. Int J Androl. 2009; 32(4):337-42. https://doi.org/10.1111/j.1365-2605. 2007.00865.x DOI: https://doi.org/10.1111/j.1365-2605.2007.00865.x
Iyiola O, Olafimihan TF, Sulaiman FA, Anifowoshe AT. Genotoxicity and histopathological assessment of silver nanoparticles in Swiss albino mice. Cuadernos de Investigacion, UNED. 2018; 10(1):102-9. https://doi. org/10.22458/urj.v10i1.2008 DOI: https://doi.org/10.22458/urj.v10i1.2008
Thakur M, Gupta H, Singh D, Mohanty IR, Maheswari U, Vanage G, Joshi DS. Histopathological and ultrastructural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J Nanobiotechnology. 2014; 12(1): 1-13. https://doi. org/10.1186/s12951-014-0042-8 DOI: https://doi.org/10.1186/s12951-014-0042-8
Kashiwada S. Distribution of nanoparticles in the seethrough medaka (Oryzias latipes). Environ Health Perspect. 2006; 114:1697-702. https://doi.org/10.1289/EHP10585 DOI: https://doi.org/10.1289/ehp.9209
Wiwanitki V, Sereemaspun A, Rojanathanes R. Effect of gold nanoparticles on spermatozoa: The first world report. Fertil Steril. 2009; 91:7-8. https://doi.org/10.1016/j. fertnstert.2007.08.021 DOI: https://doi.org/10.1016/j.fertnstert.2007.08.021
Zhang X, Yue Z, Zhang H, Liu L, Zhou X. Repeated administrations of Mn3O4 nanoparticles cause testis damage and fertility decrease through PPAR-signaling pathway. Nanotoxicology. 2020; 14(3):326-40. https://doi. org/10.1080/17435390.2019.1695976 DOI: https://doi.org/10.1080/17435390.2019.1695976
Almeida JPM, Chen AL, Foster A. Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine. 2011; 6(5):815-35. https://doi.org/10.2217/nnm.11.79 DOI: https://doi.org/10.2217/nnm.11.79
Hashemi E, Akhavan O, Shamsara M, Daliri M, Dashtizad M, Farmany A. Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells. Colloids Surf B: Biointerfaces. 2016; 146:770-6. https://doi. org/10.1016/j.colsurfb.2016.07.019 DOI: https://doi.org/10.1016/j.colsurfb.2016.07.019
Griswold MD. Spermatogenesis: The commitment to meiosis. Physiol Rev. 2016; 96(1):1- 17. https://doi. org/10.1152/physrev.00013.2015 DOI: https://doi.org/10.1152/physrev.00013.2015
Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci. 2010; 116(2):577- 89. https://doi.org/10.1093/toxsci/kfq148 DOI: https://doi.org/10.1093/toxsci/kfq148
Melnik EA, Buzulukov YP, Demin VF, Demin VA, Gmoshinski IV, Tyshko NV, Tutelyan VA. Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae. 2013; 5(3):107-15. https://doi.org/10.32607/20758251- 2013- 5-3-107-115 DOI: https://doi.org/10.32607/20758251-2013-5-3-107-115
Semmler BM, Lipka J, Wenk A, Hirn S, Schaffler M, Tian F, Schmid F, Kreyling WG. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part Fibre Toxicol. 2014; 11(1):1-12. https://doi.org/10.1186/s12989-014-0033-9 DOI: https://doi.org/10.1186/s12989-014-0033-9
Liu P, Zhao Y, Wang S, Xing H, Dong, WF. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. Environ Toxicol Pharmacol. 2021; 87:103720. https://doi.org/10.1016/j.etap.2021.103720 DOI: https://doi.org/10.1016/j.etap.2021.103720
Al-Bairuty GA, Taha MN. Effects of copper nanoparticles on reproductive organs of male a lbino rats. Int J Sci Technol. 2016; 11(3):17-24. https://doi.org/10.12816/0034940 DOI: https://doi.org/10.12816/0034940
Hong F, Si W, Zhao X, Wang L, Zhou Y, Chen M, Ge Y, Zhang Q, Wang Y, Zhang J. TiO2 nanoparticle exposure decreases spermatogenesis via biochemical dysfunctions in the testis of male mice. J Agric Food Chem. 2015; 63(31):7084-92. https://doi.org/10.1166/jbn.2020.2926 DOI: https://doi.org/10.1021/acs.jafc.5b02652
Zhao J, Luo W, Xu Y, Ling J, Deng L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. Sci Total Environ. 2021; 766:142652. https://doi.org/10.1016/j.scitotenv.2020.142652 DOI: https://doi.org/10.1016/j.scitotenv.2020.142652
Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian folliculogenesis. Molecular mechanisms of cell differentiation in gonad development. 2016; 58:167- 90. https://doi.org/10.1007/978-3-319-31973-5_7 DOI: https://doi.org/10.1007/978-3-319-31973-5_7
Hu S, Yang J, Rao M, Wang Y, Zhou F, Cheng G, Xia W, Zhu C. Copper nanoparticle‐induced uterine injury in female rats. Environ Toxicol. 2019; 34(3):252-61.https:// doi.org/10.1002/tox.22680 DOI: https://doi.org/10.1002/tox.22680
Karimipour M, Javanmard MZ, Ahmadi A, Jafari A. Oral administration of titanium dioxide nanoparticle through ovarian tissue alterations impairs mice embryonic development. Int J Reprod Biomed. 2018; 16(6):397-404. https://doi.org/10.29252/ijrm.16.6.397 DOI: https://doi.org/10.29252/ijrm.16.6.397
Xu G, Lin G, Lin S, Wu N, Deng Y, Feng G, Chen Q, Qu J, Chen D, Chen S, Niu H, Mei S, Yong KT, Wang X. The reproductive toxicity of CdSe/ZnS quantum dots on the in vivo ovarian function and in vitro fertilization. Sci Rep. 2016; 6(1):1-11. https://doi.org/10.1038/srep37677 DOI: https://doi.org/10.1038/srep37677
Kong L, Gao X, Zhu J, Cheng K, Tang M. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats. Environ Toxicol. 2016; 31(11):1674-83. https://doi.org/10.3390/ijms151121253 DOI: https://doi.org/10.1002/tox.22288
Tiedemann D, Taylor U, Rehbock C, Jakobi J, Klein S, Kues WA, Barcikowski S, Rath D. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst. 2014; 139(5):931-42. https://doi. org/10.1039/C3AN01463K DOI: https://doi.org/10.1039/C3AN01463K
Xu G, Lin X, Yong KT, Roy I, Qu J, Wang X. Visualization of reproduction toxicity of QDs for in vitro oocytes maturation. Prog Biomed Opt Imaging. 2009; 10(52). DOI: https://doi.org/10.1117/12.843521
Zhai QY, Ge W, Wang JJ, Sun XF, Ma JM, Liu JC, Zhao Y, Feng YJ, Dyce PW, Felici MD, Shen W. Exposure to Zinc oxide nanoparticles during pregnancy induces oocyte DNA damage and affects ovarian reserve of mouse offspring. Aging (Albany NY). 2018; 10(8):2170. https:// doi.org/10.18632/aging.101539 DOI: https://doi.org/10.18632/aging.101539
Zhou HY, Huang SL. Current development of the second generation of mTOR inhibitors as anticancer agents. Chin J Cancer. 2012; 31(1):8-18. https://doi.org/10.5732/ cjc.011.10281
Hong F, Zhou Y, Ye L, Ze Y, Ji J, Zhuang J, Wang L. Wnt pathway-mediated nano TiO2- induced toxic effects on rat primary cultured Sertoli cells. J Biomed Nanotech. 2018; 14(12):2124-34. https://doi.org/10.1166/jbn.2020.2926 DOI: https://doi.org/10.1166/jbn.2018.2657
Wu N, Hong F, Zhou Y, Wang Y. Exacerbation of innate immune response in mouse primary cultured Sertoli cells caused by nanoparticulate TiO2 involves the TAM/TLR signal pathway. J Biomed Mater Res. 2017; 105(1):198- 208. https://doi.org/10.1002/jbm.a.35906 DOI: https://doi.org/10.1002/jbm.a.35906
Santonastaso M, Mottola F, Colacurci N, Iovine C, Pacifico S, Cammarota M, Cesaroni F, Rocco L. In vitro genotoxic effects of Titanium dioxide nanoparticles (n‐TiO2) in human sperm cells. Mol Reprod Dev. 2019; 86(10):1369- 77. https://doi.org/10.1002/mrd.23134 DOI: https://doi.org/10.1002/mrd.23134
Miura N, Ohtani K, Hasegawa T, Yoshioka H, Hwang GW. High sensitivity of testicular function to titanium nanoparticles. J Toxicol Sci. 2017; 42(3):359-66. https:// doi.org/10.2131/jts.42.359 DOI: https://doi.org/10.2131/jts.42.359
Jia F, Sun Z, Yan X, Zhou B, Wang J. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch Toxicol. 2014; 88(3):781-8. https://doi.org/10.1007/s00204-013-1167-5 DOI: https://doi.org/10.1007/s00204-013-1167-5
Barkhordari A, Hekmatimoghaddam S, Jebali A, Khalili MA, Talebi A, Noorani M. Effect of zinc oxide nanoparticles on the viability of human spermatozoa. Iran J Reprod Med. 2013; 11(9):767.
Liu Q, Xu C, Ji G, Liu H, Mo Y, Tollerud DJ, Gu A, Zhang Q. Sublethal effects of zinc oxide nanoparticles on male reproductive cells. Toxicol In Vitro. 2016; 35:131-8. https:// doi.org/10.1016/j.tiv.2016.05.017 DOI: https://doi.org/10.1016/j.tiv.2016.05.017
Naji RM, Bashandy MA, Fathy AH. Ameliorative Effects of some Natural Antioxidants against Blood and Cardiovascular Toxicity of Oral Subchronic Exposure to Silicon Dioxide, Aluminum Oxide, or Zinc Oxide Nanoparticles in Wistar Rats. International Journal of Food Science, 2023.https://doi.org/10.1155/2023/8373406 DOI: https://doi.org/10.1155/2023/8373406
Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Kwon HII, Jeong J, Han BS, Yu JJ. Twenty-eight-day oral toxicity, genotoxicity, and gender- related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008; 20(6):575-83. https://doi.org/10.1080/08958370701874663 DOI: https://doi.org/10.1080/08958370701874663
Wang E, Huang Y, Du Q, Sun Y. Silver nanoparticleinduced toxicity to human sperm by increasing ROS (Reactive Oxygen Species) production and DNA damage. Environ Toxicol Pharmacol. 2017; 52:193-9. https://doi. org/10.1016/j.etap.2017.04.010 DOI: https://doi.org/10.1016/j.etap.2017.04.010
Liu Y, Li X, Xiao S, Liu X, Chen X, Xia Q, Lei S, Li H, Zhong Z, Xiao K. The effects of gold nanoparticles on Leydig cells and male reproductive function in mice. Int J Nanomed. 2020; 15:9499-514. https://doi.org/10.2147/IJN.S276606 DOI: https://doi.org/10.2147/IJN.S276606
Saber M, Hayaei-Tehrani RS, Mokhtari S, Hoorzad P, Esfandiari, F. In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicol In Vitro. 2021; 70:105032. https://doi.org/10.1016/j.tiv.2020.105032 DOI: https://doi.org/10.1016/j.tiv.2020.105032
Di Virgilio AL, Reigosa M, Arnal PM, De Mele MFL. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese Hamster Ovary (CHO-K1) cells. Journal of Hazardous Materials. 2010; 177(1-3):711-8. https://doi. org/10.1016/j.jhazmat.2009.12.089 DOI: https://doi.org/10.1016/j.jhazmat.2009.12.089
Scsukova S., Mlynarcikova A, Smolikova K, Rollerova E. Effects of selected nanoparticles on in vitro steroid hormone secretion by porcine ovarian granulosa cells. Reprod Toxicol. 2013; 41:33-4. https://doi.org/10.1016/j. reprotox.2013.06.080 DOI: https://doi.org/10.1016/j.reprotox.2013.06.080
Jackson P, Halappanavar S, Hougaard KS, Williams A, Madsen AM, Lamson JS, Andersen O, Yauk C, Wallin H, Vogel U. Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice: Effects in prenatally exposed offspring on hepatic DNA damage and gene expression. Nanotoxicology. 2013; 7(1):85-96 https:// doi.org/10.3109/17435390.2011.633715 DOI: https://doi.org/10.3109/17435390.2011.633715
Liu X, Qin D, Cui Y, Chen L, Li H, Chen Z, Gao L, Li Y, Liu J. The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells. Reprod Biol Endocrinol. 2010; 8(1):1-8. https://doi. org/10.1186/1477-7827-8-32 DOI: https://doi.org/10.1186/1477-7827-8-32
Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazava T, Aoshima H, Shishido K, Kawai Y, Mayumi T, Tsunoda S, Itoh N, Yoshikawa T, Yanagihara I, Saito S, Tsutsumi Y. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature Nanotechnol. 2011; 6(5):321-8. https://doi.org/10.1038/nnano.2011.41 DOI: https://doi.org/10.1038/nnano.2011.41
Austin CA, Umbreit TH, Brown KM, Barber DS, Dair BJ, Francke-Carroll S, Feswik A, Saint-Louis MA, Hikawa H, Siebein KN, Goering PL. Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology. 2012; 6(8):912-22. https://doi.org/10.310 9/17435390.2011.626539 DOI: https://doi.org/10.3109/17435390.2011.626539
Negahdary M, Arefian Z, Dastjerdi HA, Ajdary M. Toxic effects of Mn2O3 nanoparticles on rat testis and sex hormone. J Nat Sci Biol Med. 2015; 6(2):335-9. https://doi. org/10.4103/0976-9668.159998. DOI: https://doi.org/10.4103/0976-9668.159998
Dagklis T, Ravanos K, Makedou K, Kourtis A, Rousso D. Common features and differences of the hypothalamic pituitary-gonadal axis in male and female. Gynecol Endocrinol. 2015; 31(1):14-7. https://doi.org/10.3109/095 13590.2014.959917. DOI: https://doi.org/10.3109/09513590.2014.959917