Studies on Histopathological Alterations in the Brain and Gill, of Cyprinus carpio Exposed to the Insecticide Afidopyropen

Jump To References Section

Authors

  • Environmental and Molecular Toxicology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad - 580003, Karnataka ,IN
  • Environmental and Molecular Toxicology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad - 580003, Karnataka ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/34393

Keywords:

Afidopyropen, Brain, Cyprinus carpio, Gill, Histopathology

Abstract

The histopathology of the brain and gill tissues of the fish Cyprinus carpio following exposure to afidopyropen was determined by light microscopy. This particular carp species is one of the most prevalent in India. Afidopyropen (0.2 mg/L) was administered to fish for 1, 10, 20, and 30 days as part of an experiment. The tissues in the control group were found healthy. The abnormalities in the brain were Neural Degeneration (ND) Pyknotic Neuron (PN) Necrotic Internal Granule Cells (NIGC) Demyelination (DM). In gill tissues exposed to afidopyropen, hyperplasia, telangiectasia, epithelial separation, and total destruction of lamellae were seen. In the current study, afidopyropen damaged the organs, indicating its potential for harm. There were no sudden histological changes in one day-exposed group of the fishes. It could be due to healthy fish’s strong and quick adaptation capacity. The severity of stress and the associated histological changes would likely increase over time as the exposure to afidopyropen continues. However, prolonged exposure to the toxicant extremely affects the fish physiology leading to the form of above said pathological lesions.

Downloads

Download data is not yet available.

Published

2023-12-11

How to Cite

Dodamani, M., & David, M. (2023). Studies on Histopathological Alterations in the Brain and Gill, of <i>Cyprinus carpio</i> Exposed to the Insecticide Afidopyropen. Toxicology International, 30(4), 629–638. https://doi.org/10.18311/ti/2023/v30i4/34393
Received 2023-07-12
Accepted 2023-11-01
Published 2023-12-11

 

References

Bashir I, Lone FA, Bhat RA, Mir SA, Dar ZA, Dar SA. Concerns and threats of contamination on aquatic ecosystems. Bioremediat Biotechnol. 2020:1-26. https://doi.org/10.1007/978-3-030-35691-0_1 DOI: https://doi.org/10.1007/978-3-030-35691-0_1

Liebel S, Tomotake ME, Ribeiro CA. Fish histopathology as biomarker to evaluate water quality. Ecotoxicol Environ Contam. 2013; 8(2):9-15. https://doi.org/10.5132/ eec.2013.02.002 DOI: https://doi.org/10.5132/eec.2013.02.002

Laws EA. Aquatic pollution: An introductory text. New York: John Wiley and Sons; 2000.

Reddy PB, Rawat SS. Assessment of aquatic pollution using histopathology in fish as a protocol. Int Res J Environment Sci. 2013; 2(8):79-82. http://www.isca.in/IJENS/Archive/ v2/i8/13.ISCA-IRJEvS-2013-148.php

Miranda AL, Roche H, Randi MA, Menezes ML, Ribeiro CO. Bioaccumulation of chlorinated pesticides and PCBs in the tropical freshwater fish Hoplias malabaricus: Histopathological, physiological, and immunological findings. Environ Int. 2008; 34(7):939-49. https://doi. org/10.1016/j.envint.2008.02.004 DOI: https://doi.org/10.1016/j.envint.2008.02.004

Mathur S, Gupta AK. Histoenzymological study on the toxicity of copper sulphate in the digestive glands of Lymnaea luteola. J Environ Biol. 2008; 29(2):201. PMID: 18831375

Patnaik BB, Howrelia H, Mathews T, Selvanayagam M. Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. Afr J Biotechnol. 2011; 10(57):12218- 23. DOI: 10.5897/AJB10.1910

Doust JL, Schmidt M, Doust LL. Biological assessment of aquatic pollution: A review, with emphasis on plants as biomonitors. Biol Rev Camb Philos Soc. 1994; 69(2):147- 86. https://doi.org/10.1111/j.1469-185X.1994.tb01504.x DOI: https://doi.org/10.1111/j.1469-185X.1994.tb01504.x

Overstreet RM. Aquatic pollution problems, Southeastern US coasts: Histopathological indicators. Aquat Toxicol. 1988; 11(3-4):213-39. https://doi.org/10.1016/0166- 445X(88)90076-8 DOI: https://doi.org/10.1016/0166-445X(88)90076-8

Horikoshi R, Goto K, Mitomi M, Oyama K, Hirose T, Sunazuka T, Ōmura S. Afidopyropen, a novel insecticide originating from microbial secondary extracts. Sci Rep. 2022; 12(1):2827. https://doi.org/10.1038/s41598-022- 06729-z DOI: https://doi.org/10.1038/s41598-022-06729-z

Kandasamy R, London D, Stam L, von Deyn W, Zhao X, Salgado VL, Nesterov A. Afidopyropen: New and potent modulator of insect transient receptor potential channels. Insect Biochem Mol Biol. 2017; 84:32-9. https://doi. org/10.1016/j.ibmb.2017.03.005 DOI: https://doi.org/10.1016/j.ibmb.2017.03.005

Tilak KS, Veeraiah K, Kumari GV. Histopathological changes observed in the gill tissue of the fish Labeo rohita exposed to chloropyrifos. J Ecotoxicol Environ Monit. 2001; 11(3):267-70. https://eurekamag.com/ research/003/795/003795991.php

Sulekha BT, Mercy TV. Pesticide-induced histopathological changes in the freshwater fishes of Kuttanand, Kerala-a tool to assess water quality and the health status of fishes. Asian Fish Sci. 2009; 22(2):729-49. https://doi.org/10.33997/j. afs.2009.22.2.033 DOI: https://doi.org/10.33997/j.afs.2009.22.2.033

Mohamed AA, Rahman AN, Mohammed HH, Ebraheim LL, Abo-ElMaaty AM, Ali SA, Elhady WM. Neurobehavioral, apoptotic, and DNA damaging effects of sub-chronic profenofos exposure on the brain tissue of Cyprinus carpio L: Antagonistic role of Geranium essential oil. Aquat Toxicol. 2020; 224:105493. https://doi. org/10.1016/j.aquatox.2020.105493 DOI: https://doi.org/10.1016/j.aquatox.2020.105493

Hall TJ, Ragsdale RL, Arthurs WJ, Ikoma J, Borton DL, Cook DL. A long‐term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: Characteristics of the study streams, sample sites, mills, and mill effluents. Integr Environ Assess Manag. 2009; 5(2):199-218. https://doi.org/10.1897/IEAM_2008-054.1 DOI: https://doi.org/10.1897/IEAM_2008-054.1

Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L, Haghighat F, Lindholm-Lehto P, Khodaparast Z, Kamali M, Elliott A. Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. Bioresour. 2016; 11(3):7953-8091. https:// doi.org/10.15376/biores.11.3.Hubbe DOI: https://doi.org/10.15376/biores.11.3.Hubbe

Lindholm-Lehto PC, Knuutinen JS, Ahkola HS, Herve SH. Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ Sci Pollut Res. 2015; 22:6473-99. https://doi.org/10.1007/s11356-015-4163-x DOI: https://doi.org/10.1007/s11356-015-4163-x

Mallatt J. Fish gill structural changes induced by toxicants and other irritants: A statistical review. Can J Fish Aquat Sci. 1985; 42(4):630-48. https://doi.org/10.1139/f85-083 DOI: https://doi.org/10.1139/f85-083

Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut. 2003; 121(3):307-20. https://doi.org/10.1016/S0269-7491(02)00270-1 DOI: https://doi.org/10.1016/S0269-7491(02)00270-1

Giri S, Singh AK. Assessment of human health risk for heavy metals in fish and shrimp collected from Subarnarekha River, India. Int J Environ Health Res. 2014; 24(5):429-49. https://doi.org/10.1080/09603123.2013.857391 DOI: https://doi.org/10.1080/09603123.2013.857391

Salamat N, Zarie M. Using of fish pathological alterations to assess aquatic pollution: A review. Wld J Fish Mar Sci. 2012; 4(3):223-31. https://doi.org/10.5829/idosi. wjfms.2012.04.03.6174

OECD D. Test no. 203: Fish, acute toxicity test. OECD Guidelines for the Testing of Chemicals. 2019; 1:1-0.

Humason GL. Animal Tissue Techniques. 3rd ed; 1972. p. 307-8.

Sarma K, Pal AK, Sahu NP, Mukherjee SC, Baruah K. Biochemical and histological changes in the brain tissue of spotted murrel, Channa punctatus (Bloch), exposed to endosulfan. Fish Physiol Biochem. 2010; 36:597-603. https://doi.org/10.1007/s10695-009-9333-7 DOI: https://doi.org/10.1007/s10695-009-9333-7

Das BK. Studies on the effect of some pesticides and commonly used chemicals on Indian major carps and their ecosystem. Orissa University of Agriculture and Technology, Bhubaneswas, India; 1998.

Das BK, Mukherjee SC. A histopathological study of carp (Labeo rohita) exposed to hexachlorocyclohexane. Vet Arh. 2000; 70(4):169-80. https://hrcak.srce.hr/file/148095.

Mishra A, Devi Y. Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide Chlorpyrifos. Acta Histochem. 2014; 116(1):176- 81. https://doi.org/10.1016/j.acthis.2013.07.001 DOI: https://doi.org/10.1016/j.acthis.2013.07.001

Tabassum H, Khan J, Salman M, Raisuddin S, Parvez S. Propiconazole induced toxicological alterations in brain of freshwater fish Channa punctata Bloch. Ecol Indic. 2016; 62:242-8. https://doi.org/10.1016/j.ecolind.2015.11.001 DOI: https://doi.org/10.1016/j.ecolind.2015.11.001

Kendall MW, Dale JE. Scanning and transmission electron microscopic observations of rainbow trout (Salmo gairdneri) gill. J Fish Res Board Can. 1979; 36(9):1072-9. https://doi.org/10.1139/f79-150 DOI: https://doi.org/10.1139/f79-150

Selvi RT, Ilavazhahan M. Histopathological changes in gill tissue of the fish Catla catla exposed to sublethal concentration of pesticide methyl parathion and a heavy metal ferous sulphate. Biomed. Pharmacol J. 2015; 5(2):305- 12. https://doi.org/10.13005/bpj/358 DOI: https://doi.org/10.13005/bpj/358

Pautasso NA, Poletta GL, Paravani EV, Sasal MC, Simoniello MF. DNA damage and oxidative stress in gill cells of Cnesterodon decemmaculatus exposed to pesticides by runoff source in an agricultural basin. Environ Mol Mutagen. 2023; 64(3):187-97. https://doi.org/10.1002/em.22529 DOI: https://doi.org/10.1002/em.22529

Badroo IA, Nandurkar HP, Khanday AH. Toxicological impacts of herbicide paraquat dichloride on histological profile (gills, liver, and kidney) of freshwater fish Channa punctatus (Bloch). Environ Sci Pollut Res. 2020; 27:39054- 67. https://doi.org/10.1007/s11356-020-09931-6 DOI: https://doi.org/10.1007/s11356-020-09931-6

Steckert LD, Cardoso L, Jerônimo GT, de Pádua SB, Martins ML. Investigation of farmed Nile tilapia health through histopathology. Aquac. 2018; 486:161-9. https:// doi.org/10.1016/j.aquaculture.2017.12.021 DOI: https://doi.org/10.1016/j.aquaculture.2017.12.021

Neglur SB, Sanakal RD, David M, Prakash L. Studies on haematological and histopathological alterations induced by sublethal concentration of fenoxaprop-p-ethyl on freshwater fish Cyprinus Carpio. Explor Anim Med Res. 2021; 11(1). https://doi.org/10.52635/EAMR/11.1.55-66 DOI: https://doi.org/10.52635/EAMR/11.1.55-66

Sharma K, Sharma P, Dhiman SK, Chadha P, Saini HS. Biochemical, genotoxic, histological and ultrastructural effects on liver and gills of fresh water fish Channa punctatus exposed to textile industry intermediate 2 ABS. Chemosphere. 2022; 287:132103. https://doi.org/10.1016/j. chemosphere.2021.132103 DOI: https://doi.org/10.1016/j.chemosphere.2021.132103

Sharma R, Jindal R, Faggio C. Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comp Biochem Physiol Part - C: Toxicol Pharmacol. 2021; 248:109113. https://doi.org/10.1016/j.cbpc.2021.109113 DOI: https://doi.org/10.1016/j.cbpc.2021.109113