Determination of Lethal Dose of Disodium 5’ Ribonucleotide (E635) on Embryonic Development of Gallus gallus
DOI:
https://doi.org/10.18311/ti/2024/v31i1/35180Keywords:
Chick Embryo, Disodium 5’ Ribonucleotide, Food Additive, Lethal Dose, SPSS, ToxicityAbstract
Disodium 5’ Ribonucleotide (E635), a food additive, has FDA safety, but concerns about its potential toxicity in developmental biology have been raised due to limited research on its lethal effects. The present research aimed to investigate the lethal dose of E635 when induced into a vertebrate chick embryo model. Pilot doses of E635 ranging from 1 μg- 400 μg per egg were inoculated. Consequently, fertilized chick eggs were randomly assigned to 6 groups, including 1 control and 5 differently intoxicated groups of E635 doses per egg. E635 was induced in eggs by in vivo administration and incubated for up to 15 days. LD50 was determined by using probit analysis in SPSS. The study showed morphological, physiological and survival alterations. A dose-dependent mortality was observed by E635 induction in the present study. The results were interpreted for functional and biological changes in the developing embryo of Gallus gallus to confirm the induced toxicity. LD50 of E635 on chick embryo was found to be 0.054 μg per egg.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Shaiba Iqbal Sharikmaslat, Nitin Anandrao Kamble
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-01-04
Published 2024-02-28
References
Wilson BG, Bahna SL. Adverse reactions to food additives. Annals of Allergy, Asthma and Immunology. 2005; 95(6):499-507 DOI: https://doi.org/10.1016/S1081-1206(10)61010-1
Wu L, Zhang C, Long Y, Chen Q, Zhang W, Liu G. Food additives: From functions to analytical methods. Critical Reviews in Food Science and Nutrition. 2022; 62(30):8497- 517. https://doi.org/10.1080/10408398.2021.1929823 PMid:34058921 DOI: https://doi.org/10.1080/10408398.2021.1929823
Carocho M, Morales P, Ferreira IC. Natural food additives: Quo vadis? Trends in Food Science and Technology. 2015; 45(2):284-95. https://doi.org/10.1016/j.tifs.2015.06.007 DOI: https://doi.org/10.1016/j.tifs.2015.06.007
Yamaguchi S, Ninomiya K. What is umami? Food Reviews International. 1998; 14(2-3):123-38. https://doi. org/10.1080/87559129809541155 DOI: https://doi.org/10.1080/87559129809541155
Jelea S, Jelea M, Mihalescu L, Voşgan Z, Jelea O. Monitoring food additives and nutritional composition of labels of food bases. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture. 2019; 76(1):40-5. https://doi.org/10.15835/buasvmcnhort: 2018.0007 PMid:30083037 DOI: https://doi.org/10.15835/buasvmcn-hort:2018.0007
Kamio H, Nakamachi H. Water of crystallization in disodium 5’-inosinate and disodium 5’-guanylate and their mixed crystal formation. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan. 1967; 87(12):1436-41. https://doi. org/10.1248/yakushi1947.87.12_1436 PMid:5628348 DOI: https://doi.org/10.1248/yakushi1947.87.12_1436
Potenski CJ, Klein HL. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Research. 2014; 42(16):10226- 34. https://doi.org/10.1093/nar/gku773 PMid:25159610 PMCid: PMC4176331 DOI: https://doi.org/10.1093/nar/gku773
Klein HL. Genome instabilities arising from ribonucleotides in DNA. DNA Repair. 2017; 56:26-32. https://doi. org/10.1016/j.dnarep.2017.06.004 PMid:28629774 PMCid: PMC5533643 DOI: https://doi.org/10.1016/j.dnarep.2017.06.004
Wallace BD, Williams RS. Ribonucleotide triggered DNA damage and RNA-DNA damage responses. RNA Biology. 2014; 11(11):1340-6. https://doi.org/10.4161/15476286.201 4.992283 PMid:25692233 PMCid: PMC4615641 DOI: https://doi.org/10.4161/15476286.2014.992283
EFSA panel on additives and products or substances used in animal feed. Scientific Opinion on the safety and efficacy of disodium 5΄‐ribonucleotides, disodium 5΄‐guanylate, and disodium 5΄‐inosinate for all animal species and categories. EFSA Journal. 2014; 12(3):3606. https://doi.org/10.2903/j. efsa.2014.3606 DOI: https://doi.org/10.2903/j.efsa.2014.3606
Kotwani, A. Use of chick embryo in screening for teratogenicity. Indian Journal of Physiology and Pharmacology. 1998; 42:189-204.
Drake VJ, Koprowski SL, Lough JW, Smith SM. Gastrulating chick embryo as a model for evaluating teratogenicity: A comparison of three approaches. Birth Defects Research Part A: Clinical and Molecular Teratology. 2006; 76(1):66- 71. https://doi.org/10.1002/bdra.20202 PMid:16333841 DOI: https://doi.org/10.1002/bdra.20202
Kue CS, Tan KY, LaM ML, Lee HB. Chick embryo Chorioallantoic Membrane (CAM): An alternative predictive model in acute toxicological studies for anticancer drugs. Experimental Animals. 2015; 64(2):129-38. https://doi.org/10.1538/expanim.14-0059 PMid:25736707 PMCid: PMC4427727 DOI: https://doi.org/10.1538/expanim.14-0059
Bjørnstad S, Austdal LP, Roald B, Glover JC, Paulsen RE. Cracking the egg: The potential of the developing chicken as a model system for nonclinical safety studies of pharmaceuticals. Journal of Pharmacology and Experimental Therapeutics. 2015; 355(3):386-96. https:// doi.org/10.1124/jpet.115.227025 PMid:26432906 DOI: https://doi.org/10.1124/jpet.115.227025
Al-Qudsi F, Al-Jahdali A. Effect of monosodium glutamate on chick embryo development. J Am Sci. 2012; 8:499-509.
Ribatti D. Chicken chorioallantoic membrane angiogenesis model. Cardiovascular Development: Methods and Protocols. 2012; 47-57. https://doi.org/10.1007/978-1- 61779-523-7_5 PMid:22222520 DOI: https://doi.org/10.1007/978-1-61779-523-7_5
Yamamoto FY, Neto FF, Freitas PF, Ribeiro CO, Ortolani- Machado CF. Cadmium effects on early development of chick embryos. Environmental Toxicology and Pharmacology. 2012; 34(2):548-55. https://doi.org/10.1016/j.etap.2012.06.010 PMid:22824502 DOI: https://doi.org/10.1016/j.etap.2012.06.010
Martinez-Moreno CG, Epardo D, Balderas-Márquez JE, Fleming T, Carranza M, Luna M, Harvey S, Arámburo C. Regenerative effect of Growth Hormone (GH) in the retina after kainic acid excitotoxic damage. International Journal of Molecular Sciences. 2019; 20(18):4433. https:// doi.org/10.3390/ijms20184433PMid:31509934 PMCid: PMC6770150 DOI: https://doi.org/10.3390/ijms20184433
Donofre AC, Da Silva IJ, Ferreira IE. Sound exposure and its beneficial effects on embryonic growth and hatching of broiler chicks. British Poultry Science. 2020; 61(1):79-85. https://doi. org/10.1080/00071668.2019.1673315 PMid:31559840 DOI: https://doi.org/10.1080/00071668.2019.1673315
Elumalai G, Chodisetty S. Teratological effects of high dose progesterone on neural tube development in chick embryos. Elixir Gynaecology. 2016; 97:42085-9.
Andersson C, Gripenland J, Johansson J. Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections. Nature Protocols. 2015; 10(8):1155-64. https://doi.org/10.1038/nprot.2015.073 PMid:26134955 DOI: https://doi.org/10.1038/nprot.2015.073
Tendulkar S, Kamble N. Determination of Lethal Concentration (LC50) of paclobutrazol on the selected molluscs. Bulletin Monumental. 2023; 24(5):49-56.
Norris D, Ngambi JW, Benyi K, Makgahlele ML, Shimelis HA, Nesamvuni EA. Analysis of growth curves of indigenous male venda and naked neck chickens. South African Journal of Animal Science. 2007; 37(1):21-6. https://doi.org/10.4314/sajas.v37i1.4021 DOI: https://doi.org/10.4314/sajas.v37i1.4021
Ishidate Jr M, Sofuni T, Yoshikawa K, Hayashi M, Nohmi T, Sawada M, Matsuoka A. Primary mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology. 1984; 22(8):623-36. https://doi. org/10.1016/0278-6915(84)90271-0 PMid:6381265 DOI: https://doi.org/10.1016/0278-6915(84)90271-0
Sharma S, Uggini GK, Patel V, Desai I, Balakrishnan S. Exposure to a sub-lethal dose of a combination insecticide during early embryogenesis influences the normal patterning of mesoderm resulting in incomplete closure of ventral body wall of chicks of domestic hen. Toxicology Reports. 2018; 5:302-8. https://doi.org/10.1016/j. toxrep.2018.02.005 PMid:29556477 PMCid: PMC5856662 DOI: https://doi.org/10.1016/j.toxrep.2018.02.005
Jarnot J. Analysis of food additives in the production of sausages. Annals of The University of Craiova-Agriculture Montanology Cadastre Series. 2022; 52(1):218-23. https:// doi.org/10.52846/aamc.v52i1.1336 DOI: https://doi.org/10.52846/aamc.v52i1.1336
Kojima K. Safety evaluation of disodium 5΄-inosinate, disodium 5΄-guanylate and disodium 5΄-ribonucleotide. Toxicology. 1974; 2(2):185-206. https://doi. org/10.1016/0300-483X(74)90009-2 PMid:4601956 DOI: https://doi.org/10.1016/0300-483X(74)90009-2
Zheng C, Yang D, Li Z, Xu Y. Toxicity of flavour enhancers to the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Ecotoxicology. 2018; 27:619-26. https://doi. org/10.1007/s10646-018-1934-4 PMid:29644544 DOI: https://doi.org/10.1007/s10646-018-1934-4
Palmer AK, Lovell MR, Spicer EJ, Worden AN. The effect of disodium 5΄-ribonucleotide on reproductive function over three generations in the rat. Toxicology. 1975; 3(3):333-40. https://doi.org/10.1016/0300-483X(75)90034-7 PMid:47658 DOI: https://doi.org/10.1016/0300-483X(75)90034-7
Huang Y, Chen S, Li Z, Wang L, Xu Y. Effects of flavour enhancers on the survival and behaviour of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Environmental Science and Pollution Research. 2018; 25:21879-86. https://doi.org/10.1007/s11356-018-2276-8 PMid:29796890 DOI: https://doi.org/10.1007/s11356-018-2276-8