Diosgenin Mitigates Aluminum Chloride Mediated Developmental Toxicity in Drosophila melanogaster

Jump To References Section

Authors

  • Department of Zoology, Savitribai Phule Pune University, Pune - 411007, Maharashtra ,IN
  • Department of Zoology, Fergusson College, Pune - 411005, Maharashtra ,IN
  • Department of Zoology, Savitribai Phule Pune University, Pune - 411007, Maharashtra ,IN
  • Central Ayurveda Research Institute, Sector V, 4-CN Block, Bidhannagar, Kolkata - 700091, West Bengal ,IN
  • Department of Herbal Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune - 411046, Maharashtra ,IN
  • Department of Herbal Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune - 411046, Maharashtra ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i2/35761

Keywords:

Aluminium, Developmental Neurotoxicity, Diosgenin, Drosophila melanogaster, Reactive Oxygen Species (ROS)

Abstract

Aluminum (Al) is a dangerous environmental neurotoxin that can cause tissue inflammation and oxidative stress. Diosgenin (DG) is a chemical that possesses therapeutic potential and is a powerful neuroprotective and antioxidant agent. Due to their unique anatomy, physiology, and diet, newborns are at a higher risk of harm from the developmental toxin Al. Researchers widely used Drosophila melanogaster as a popular model to study the toxicity of Al in recent years. The study investigates potential protective effects of dietary DG on D. melanogaster, a model of Al-toxicity. The larvae were raised on a diet containing 40 mM/kg Aluminium Chloride (AlCl3) and 15 mM/kg DG. AlCl3 caused oxidative stress and neurobehavioural abnormalities. However, dietary DG improved nociception and crawling deficits by restoring acetylcholinesterase levels and reducing oxidative stress. The study found that higher doses of DG reduced the negative effects of AlCl3 exposure, suggesting DG’s antioxidant potential could treat diseases caused by free radicals. The study reveals that Al-rich diets cause oxidative stress in D. melanogaster, affecting development, metabolism, and neurobehavioral function. DG, as an antioxidant, can protect against negative effects, but its benefits decrease with higher concentrations, the ideal dosage being 15 mM/kg.

Downloads

Download data is not yet available.

Published

2024-04-08

How to Cite

Chavan, P., Danane, T., Sharbidre, A., Pawar, S., Jadhav, A., & Jagtap, S. (2024). Diosgenin Mitigates Aluminum Chloride Mediated Developmental Toxicity in <i>Drosophila melanogaster</i>. Toxicology International, 31(2), 169–180. https://doi.org/10.18311/ti/2024/v31i2/35761
Received 2023-12-01
Accepted 2024-02-14
Published 2024-04-08

 

References

Exley C. Human exposure to aluminium. Environ Sci Process Impacts. 2013; 15(10):1807-16. https://doi. org/10.1039/C3EM00374D. PMid:23982047. DOI: https://doi.org/10.1039/C3EM00374D

Cullen JM, Allwood JM. Mapping the global flow of aluminium: From liquid aluminium to end-use goods. Environmental Science and Technology. 2013; 47(7):3057- 64. https://doi.org/10.1021/es304256s. PMid:23438734. DOI: https://doi.org/10.1021/es304256s

Ogimoto M, Suzuki K, Kabashima J, Nakazato M, Uematsu Y. Aluminium content in foods with aluminium-containing food additives. Shokuhin Eiseigaku Zasshi Journal of the Food Hygienic Society of Japan. 2012; 53(1):57-62. https:// doi.org/10.3358/shokueishi.53.57. PMid:22450671. DOI: https://doi.org/10.3358/shokueishi.53.57

Powell JJ, Thompson RP. The chemistry of aluminium in the gastrointestinal lumen and its uptake and absorption. Proc Nutr Soc. 1993; 52(1):241-53. https://doi.org/10.1079/ PNS19930056. PMid:8493270. DOI: https://doi.org/10.1079/PNS19930056

World Health Organization. The world health report 2003: Shaping the future. World Health Organization; 2003.

Kongerud J. Respiratory disorders in aluminium potroom workers. Med Lav. 1992; 83(5):414-7.

Lukyanenko LM, Skarabahatava AS, Slobozhanina EI, Kovaliova SA, Falcioni ML, Falcioni G. In vitro effect of AlCl3 on human erythrocytes: changes in membrane morphology and functionality. Journal of Trace Elements in Medicine and Biology. 2013; 27(2):160-7. https://doi. org/10.1016/j.jtemb.2012.10.003. PMid:23199702. DOI: https://doi.org/10.1016/j.jtemb.2012.10.003

Zhu Y, Li Y, Miao L, Wang Y, Liu Y, Yan X, et al. Immunotoxicity of aluminium. Chemosphere. 2014; 04:1-6. https://doi. org/10.1016/j.chemosphere.2013.10.052 PMid:24287266. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.052

Klein GL. Aluminium toxicity to bone: A multisystem effect? Osteoporosis and Sarcopenia. 2019; 5(1):2-5. https:// doi.org/10.1016/j.afos.2019.01.001 PMid:31008371 PMCid: PMC6453153. DOI: https://doi.org/10.1016/j.afos.2019.01.001

Yokel RA. Aluminium reproductive toxicity: A summary and interpretation of scientific reports. Critical Reviews in Toxicology. 2020; 50(7):551-93. https://doi.org/10.1080/10 408444.2020.1801575. PMid:32869713. DOI: https://doi.org/10.1080/10408444.2020.1801575

Inan-Eroglu E, Ayaz A. Is aluminium exposure a risk factor for neurological disorders? Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences. 2018;23. https://doi. org/10.4103/jrms.JRMS_921_17 PMid:30057635 PMCid: PMC6040147. DOI: https://doi.org/10.4103/jrms.JRMS_921_17

Badawoud MH, Abdel-Aziz G, El-Fark MM, Badawoud HM. The effect of aluminium exposure on maternal health and fetal growth in rats. Cureus. 2022; 14(11):e31775. https://doi.org/10.7759/cureus.31775. DOI: https://doi.org/10.7759/cureus.31775

Exley C, House ER. Aluminium in the human brain. Monatsh Chem. 2011; 142(4):357-63. https://doi.org/10.1007/s00706- 010-0417-y. DOI: https://doi.org/10.1007/s00706-010-0417-y

Chuchu N, Patel B, Sebastian B, Exley C. The aluminium content of infant formulas remains too high. BMC Pediatrics. 2013; 13:1-5. https://doi.org/10.1186/1471- 2431-13-162. PMid:24103160 PMCid: PMC3851493. DOI: https://doi.org/10.1186/1471-2431-13-162

Corkins MR, Abrams SA, Fuchs GJ, Goday PS, Hannon TS, Kim JH, et al. Aluminium effects in infants and children. Pediatrics. 2019; 144(6):e20193148. https://doi.org/10.1542/peds.2019-3148. PMid:31767714. DOI: https://doi.org/10.1542/peds.2019-3148

Millichap J. Perinatal IV Aluminum and developmental delay. Pediatric Neurology Briefs. 1997; 11(6). https://doi. org/10.15844/pedneurbriefs-11-6-1. DOI: https://doi.org/10.15844/pedneurbriefs-11-6-1

Nasim M. Aluminium induced intrauterine growth retardation-an experimental study. Annals of King Edward Medical University. 2004; 10(1). https://doi.org/10.21649/ akemu.v10i1.1161. DOI: https://doi.org/10.21649/akemu.v10i1.1161

Miller NZ. Aluminium in childhood vaccines is unsafe. Journal of American Physicians and Surgeons. 2016; 21(4).

Boretti A. Reviewing the association between aluminium adjuvants in the vaccines and autism spectrum disorder. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS). 2021; 66:126764. https://doi.org/10.1016/j.jtemb.2021.126764. PMid:33930617. DOI: https://doi.org/10.1016/j.jtemb.2021.126764

Malaki M. Acute encephalopathy following the use of aluminium hydroxide in a boy affected with chronic kidney disease. J Pediatr Neurosci. 2013; 8(1):81-2. https://doi. org/10.4103/1817-1745.111439. PMid:23772257 PMCid: PMC3680909. DOI: https://doi.org/10.4103/1817-1745.111439

Maya S, Prakash T, Madhu KD, Goli D. Multifaceted effects of aluminium in neurodegenerative diseases: A review. Biomed Pharmacother. 2016; 83:746-54. https://doi. org/10.1016/j.biopha.2016.07.035 PMid:27479193. DOI: https://doi.org/10.1016/j.biopha.2016.07.035

Clay R. Developmental toxicity of aluminium and silver to Drosophila melanogaster. Manchester, UK: The University of Manchester; 2014.

Kijak E, Rosato E, Knapczyk K, Pyza E. Drosophila melanogaster as a model system of aluminium toxicity and ageing. Insect Sci. 2014; 21(2):189-202. https://doi. org/10.1111/1744-7917.12017 PMid:23956142. DOI: https://doi.org/10.1111/1744-7917.12017

Inneh C, Eiya B. Anticholinesterase activity and antioxidant effect of vitamin E in aluminium chloride induced toxicity in Drosophila melanogaster. J Afr Ass Physiol Sci. 2023; 11(1):17-28. https://doi.org/10.4314/jaaps.v11i1.2 DOI: https://doi.org/10.4314/jaaps.v11i1.2

Bayliak MM, Lylyk MP, Gospodaryov DV, Kotsyubynsky VO, Butenko NV, Storey KB, et al. Protective effects of alphaketoglutarate against aluminium toxicity in Drosophila melanogaster. Comp Biochem Physiol Part C: Toxicol Pharmacol. 2019; 217:41-53. https://doi.org/10.1016/j. cbpc.2018.11.020 PMid:30508642 DOI: https://doi.org/10.1016/j.cbpc.2018.11.020

Oyetayo BO, Abolaji AO, Fasae KD, Aderibigbe A. Ameliorative role of diets fortified with curcumin in a Drosophila melanogaster model of aluminium chlorideinduced neurotoxicity. Journal of Functional Foods. 2020; 71:104035. https://doi.org/10.1016/j.jff.2020.104035 DOI: https://doi.org/10.1016/j.jff.2020.104035

Oboh G, Oladun FL, Ademosun AO, Ogunsuyi OB. Anticholinesterase activity and antioxidant properties of Heinsia crinita and Pterocarpus soyauxii in Drosophila melanogaster model. Journal of Ayurveda and Integrative Medicine. 2021;12(2):254-60. https://doi.org/10.1016/j. jaim.2020.10.004 PMid:33514461 PMCid: PMC8185959. DOI: https://doi.org/10.1016/j.jaim.2020.10.004

Ogunsuyi OB, Olagoke OC, Afolabi BA, Oboh G, Ijomone OM, Barbosa NV, et al. Dietary inclusions of solanum vegetables mitigate aluminum-induced redox and inflammation-related neurotoxicity in Drosophila melanogaster model. Nutr Neurosci. 2022; 25(10):2077- 91. https://doi.org/10.1080/1028415X.2021.1933331 PMid:34057051. DOI: https://doi.org/10.1080/1028415X.2021.1933331

Adedayo BC, Ogunsuyi OB, Akinniyi ST, Oboh G. Effect of Andrographis paniculata and Phyllanthus amarus leaf extracts on selected biochemical indices in Drosophila melanogaster model of neurotoxicity. Drug and Chemical Toxicology. 2022; 45(1):407-16. https://doi.org/10.1080/01 480545.2019.1708377 PMid:31899970. DOI: https://doi.org/10.1080/01480545.2019.1708377

Pari L, Monisha P, Jalaludeen AM. The beneficial role of diosgenin on oxidative stress in the aorta of streptozotocininduced diabetic rats. European Journal of Pharmacology. 2012; 691(1-3):143-50. https://doi.org/10.1016/j. ejphar.2012.06.038 PMid:22771295. DOI: https://doi.org/10.1016/j.ejphar.2012.06.038

Shanmugam G, Mohankumar A, Kalaiselvi D, Nivitha S, Murugesh E, Shanmughavel P, et al. Diosgenin a phytosterol substitute for cholesterol, prolongs the lifespan and mitigates glucose toxicity via DAF-16/ FOXO and GST-4 in Caenorhabditis elegans. Biomedicine and Pharmacotherapy. 2017; 95:1693-703. https://doi. org/10.1016/j.biopha.2017.09.096 PMid:28954389. DOI: https://doi.org/10.1016/j.biopha.2017.09.096

Gupta DD, Mishra S, Verma SS, Shekher A, Rai V, Awasthee N, et al. Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indian Himalayan landraces. J Ethnopharmacol. 2021; 270:113842. https://doi. org/10.1016/j.jep.2021.113842 PMid:33460752. DOI: https://doi.org/10.1016/j.jep.2021.113842

Mishra P, Mandlik D, Arulmozhi S, Mahadik K. Nephroprotective role of diosgenin in gentamicininduced renal toxicity: Biochemical, antioxidant, immunological and histopathological approach. Future Journal of Pharmaceutical Sciences. 2021; 7(1):169. https://doi.org/10.1186/s43094-021-00318-z DOI: https://doi.org/10.1186/s43094-021-00318-z

Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, et al. The effects of Diosgenin on hypolipidemia and its underlying mechanism: A review. Diabetes Metab Syndr Obes. 2021; 14:4015-30. https://doi.org/10.2147/DMSO.S326054 PMid:34552341 PMCid: PMC8450287. DOI: https://doi.org/10.2147/DMSO.S326054

Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of Diosgenin: A concise report. Nat Prod Bioprospect. 2012; 2(2):46-52. https://doi.org/10.1007/s13659-012-0014-3 PMCid: PMC4131590. DOI: https://doi.org/10.1007/s13659-012-0014-3

Romero-Hernández LL, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Báez JL, Abasolo I, et al. Diosgeninbased thio (seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile. Eur J Med Chem. 2015; 99:67-81. https://doi.org/10.1016/j. ejmech.2015.05.018 PMid:26046314. DOI: https://doi.org/10.1016/j.ejmech.2015.05.018

Wang D, Wang X. Diosgenin and its analogs: Potential protective agents against atherosclerosis. Drug Design, Development and Therapy. 2022; 2305-23. https://doi.org/10.2147/DDDT.S368836 PMid:35875677 PMCid: PMC9304635. DOI: https://doi.org/10.2147/DDDT.S368836

Aryal B, Dhakal S, Shrestha B, Sang J, Pradhan RN, Lee Y. Protocol for binary food choice assays using Drosophila melanogaster. STAR protocols. 2022; 3(2):101410. https:// doi.org/10.1016/j.xpro.2022.101410 PMid:35620079 PMCid: PMC9127214. DOI: https://doi.org/10.1016/j.xpro.2022.101410

Krittika S, Lenka A, Yadav P. Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biol Open. 2019; 8(6):bio042952. https://doi.org/10.1242/bio.042952 PMid:31171531 . PMCid: PMC6602320. DOI: https://doi.org/10.1242/bio.042952

Im SH, Galko MJ. Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception. Dev Dyn. 2012; 241(1):16-26. https://doi.org/10.1002/dvdy.22737 PMid:21932321 PMCid: PMC3258975. DOI: https://doi.org/10.1002/dvdy.22737

Lopez-Bellido R, Himmel NJ, Gutstein HB, Cox DN, Galko MJ. An assay for chemical nociception in Drosophila larvae. Philosophical Transactions of the Royal Society B. 2019; 374(1785):20190282. https://doi.org/10.1098/ rstb.2019.0282 PMid:31544619 PMCid: PMC6790381. DOI: https://doi.org/10.1098/rstb.2019.0282

Gjorgjieva J, Berni J, Evers JF, Eglen SJ. Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modelling. Frontiers in Computational Neuroscience. 2013; 7:24. https://doi.org/10.3389/ fncom.2013.00024 PMid:23576980 PMCid: PMC3616270. DOI: https://doi.org/10.3389/fncom.2013.00024

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72(1):248–54. DOI: https://doi.org/10.1006/abio.1976.9999

Sabat D, Patnaik A, Ekka B, Dash P, Mishra M. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiology and Behaviour. 2016; 167:76-85. https://doi.org/10.1016/j. physbeh.2016.08.032 PMid:27609308. DOI: https://doi.org/10.1016/j.physbeh.2016.08.032

Pappus SA, Ekka B, Sahu S, Sabat D, Dash P, Mishra M. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. Journal of Nanoparticle Research. 2017; 4(19):1-16. https://doi.org/10.1007/s11051-017-3824-8 DOI: https://doi.org/10.1007/s11051-017-3824-8

Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry. 1959; 82:70-7. https://doi.org/10.1016/0003-9861(59)90090-6 PMid:13650640. DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Exley C. A biogeochemical cycle for aluminium? Journal of Inorganic Biochemistry. 2003; 97(1):1-7. https://doi. org/10.1016/S0162-0134(03)00274-5 PMid:14507454 DOI: https://doi.org/10.1016/S0162-0134(03)00274-5

Belaïd-Nouira Y, Bakhta H, Bouaziz M, Flehi-Slim I, Haouas Z, Ben Cheikh H. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity. Modulatory effect of fenugreek seeds. Lipids Health Dis. 2012; 11(1):16. https://doi.org/10.1186/1476- 511X-11-16 PMid:22280491 PMCid: PMC3296590. DOI: https://doi.org/10.1186/1476-511X-11-16

Onyegeme-Okerenta BM, Anacletus FC. Hepatoprotective and ameliorative effects of selected antioxidants on Aluminium induced toxicity on Wistar rats. European Journal of Advanced Research in Biological and Life Sciences. 2016; 4(2):24-34.

Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, et al. Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. JBC. 2018; 293(21):8297-311. https://doi.org/10.1074/jbc.RA118.001885 PMid:29523684 PMCid: PMC5971457. DOI: https://doi.org/10.1074/jbc.RA118.001885

Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Harpephyllum caffrum fruit (wild plum) facilitates glucose uptake and modulates metabolic activities linked to neurodegeneration in isolated rat brain: An in vitro and silico approach. J Food Biochem. 2022; 46(8):e14177. https://doi.org/10.1111/jfbc.14177 DOI: https://doi.org/10.1111/jfbc.14177

Król-Kogus B, Lamine KM, Migas P, Boudjeniba M, Krauze- Baranowska M. HPTLC determination of diosgenin in fenugreek seeds. Acta Pharmaceutica. 2018; 68(1):97-107. https://doi.org/10.2478/acph-2018-0002 PMid:29453912. DOI: https://doi.org/10.2478/acph-2018-0002

Li R, Liu Y, Shi J, Yu Y, Lu H, Yu L, et al. Diosgenin regulates cholesterol metabolism in hypercholesterolemic rats by inhibiting NPC1L1 and enhancing ABCG5 and ABCG8. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2019; 1864(8):1124-33. https://doi. org/10.1016/j.bbalip.2019.04.010 PMid:31054325 DOI: https://doi.org/10.1016/j.bbalip.2019.04.010

Som S, Antony J, Dhanabal P, Sivasankaran P. Neuroprotective role of diosgenin, A NGF stimulator, against Aβ (1-42) induced neurotoxicity in an animal model of Alzheimer’s disease. 2022; 37(2):359-72. https:// doi.org/10.21203/rs.3.rs-340454/v1 DOI: https://doi.org/10.1007/s11011-021-00880-8

Lenz S, Karsten P, Schulz JB, Voigt A. Drosophila as a screening tool to study human neurodegenerative diseases. J Neurochem. 2013; 127(4):453-60. https://doi.org/10.1111/jnc.12446 PMid:24028575. DOI: https://doi.org/10.1111/jnc.12446

He BZ, Ludwig MZ, Dickerson DA, Barse L, Arun B, Vilhjálmsson BJ, et al. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin. Genetics. 2014; 196(2):557-67. https://doi. org/10.1534/genetics.113.157800 PMid:24281155 PMCid: PMC3914626. DOI: https://doi.org/10.1534/genetics.113.157800

Tomljenovic L. Aluminum and Alzheimer’s disease: After a century of controversy, is there a plausible link? J Alzheimers Dis. 2011; 23(4):567-98. https://doi.org/10.3233/JAD-2010- 101494. PMid:21157018. DOI: https://doi.org/10.3233/JAD-2010-101494

Prüßing K, Voigt A, Schulz JB. Drosophila melanogaster as a model organism for Alzheimer’s disease. Molecular Neurodegeneration. 2013; 8(1):35. https://doi.org/10.1186/ 1750-1326-8-35. PMid:24267573 PMCid: PMC4222597 DOI: https://doi.org/10.1186/1750-1326-8-35

Hao Y, Gao X. Diosgenin protects retinal pigment epithelial cells from inflammatory damage and oxidative stress induced by high glucose by activating the AMPK/Nrf2/ HO-1 pathway. Immun Inflamm Dis. 2022; 10(12):e698. https://doi.org/10.1002/iid3.698 PMid:36444632 PMCid: PMC9667204. DOI: https://doi.org/10.1002/iid3.698

Inglis JJ, Nissim A, Lees DM, Hunt SP, Chernajovsky Y, Kidd BL. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Research and Therapy. 2005; 7(4):R807. https://doi.org/10.1186/ar1743. PMid:15987482 PMCid: PMC1175031. DOI: https://doi.org/10.1186/ar1743

Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, et al. Aluminium chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rats. Chemosphere. 2016; 151:289-95. https://doi. org/10.1016/j.chemosphere.2016.02.092 PMid:26946116. DOI: https://doi.org/10.1016/j.chemosphere.2016.02.092

Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. The role of Drosophila Piezo in mechanical nociception. Nature. 2012; 483(7388):209-12. https://doi.org/10.1038/ nature10801 PMid:22343891 PMCid: PMC3297676. DOI: https://doi.org/10.1038/nature10801

Kiasalari Z, Rahmani T, Mahmoudi N, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates development of neuropathic pain in diabetic rats: Involvement of oxidative stress and inflammation. Biomed Pharmacother. 2017; 86:654-61. https://doi.org/10.1016/j.biopha.2016.12.068 PMid:28033582. DOI: https://doi.org/10.1016/j.biopha.2016.12.068

Mishra PK, Ekielski A, Mukherjee S, Sahu S, Chowdhury S, Mishra M, et al. Wood-based cellulose nanofibrils: Haemocompatibility and impact on the development and behaviour of Drosophila melanogaster. Biomolecules. 2019; 9(8):363. https://doi.org/10.3390/biom9080363 PMid:31412664 PMCid: PMC6722666. DOI: https://doi.org/10.3390/biom9080363

Ogunsuyi OB, Aro OP, Oboh G, Olagoke OC. Curcumin improves the ability of donepezil to ameliorate memory impairment in Drosophila melanogaster: involvement of cholinergic and CNC/Nrf2-redox systems. Drug Chem Toxicol. 2022; 46(5):1035-43. https://doi.org/10.1080/0148 0545.2022.2119995 PMid:36069210. DOI: https://doi.org/10.1080/01480545.2022.2119995

Wu Z, Du Y, Xue H, Wu Y, Zhou B. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and Reactive Oxygen Species (ROS) production. Neurobiol Aging. 2012; 33(1):199.e1-12. https://doi.org/10.1016/j.neurobiolaging.2010.06.018. PMid:20674094. DOI: https://doi.org/10.1016/j.neurobiolaging.2010.06.018