Therapeutic Potential of Alcoholic Extract from Lemna minor Linn. in Attenuating Atherosclerosis Induced by High-Fat Diet in Male Wistar Rats

Jump To References Section

Authors

  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN
  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN
  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN
  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN
  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN
  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN
  • Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru - 560035, Karnataka ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i3/35843

Keywords:

Atherosclerosis, Cardioprotective, HMG-CoA Reductase, Lemna minor Linn., Oxidative Stress

Abstract

This study explored the cardioprotective effects of Alcoholic Extract of Lemna minor Linn. (AELM) against high-fat diet-induced atherosclerosis in male Wistar rats. AELM was administered at doses of 300 mg/kg and 800 mg/kg. Assessments included lipid profiles, oxidative stress markers, cardiac injury enzymes, and liver parameters associated with cholesterol synthesis. Results showed significant reductions in lipid levels, oxidative stress markers, and cardiac injury enzymes, particularly with the higher dose of 800 mg/kg. AELM also lowered the atherogenic index and improved HDLc levels, indicating the potential to mitigate atherosclerosis-related lipid imbalances. Furthermore, AELM exhibited a dose-dependent reduction in the HMG CoA/mevalonate ratio, suggesting inhibition of HMG-CoA reductase activity, crucial in cholesterol synthesis. Molecular docking studies supported AELM’s antiatherosclerotic potential, with leucine demonstrating favourable binding energies with atherosclerosis-associated enzymes. Histopathological analysis revealed structural improvements in rat aortas with AELM treatment. In conclusion, AELM presents promise as a therapeutic agent against atherosclerosis through modulation of lipid metabolism, attenuation of oxidative stress, and inhibition of HMGCoA reductase activity.

Downloads

Download data is not yet available.

Published

2024-07-24

How to Cite

Yamini, B. R., Sarkar, M., Joshi, K. P., Kumar, R. R., Kumar, M., Nishanth, D. R., & Chandini, C. H. (2024). Therapeutic Potential of Alcoholic Extract from <i>Lemna minor</i> Linn. in Attenuating Atherosclerosis Induced by High-Fat Diet in Male Wistar Rats. Toxicology International, 31(3), 443–455. https://doi.org/10.18311/ti/2024/v31i3/35843
Received 2023-12-10
Accepted 2024-04-15
Published 2024-07-24

 

References

Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers. 2019; 5(1). https://doi.org/10.1038/s41572-019-0106-z PMid:31420554 DOI: https://doi.org/10.1038/s41572-019-0106-z

Guessoum CI. Analysis of catecholamine-induced betaadrenergic signalling in TTS by patient-specific pluripotent stem cell-derived cardiomyocytes. Göttingen: Georg- August Universität; 2020.

Perk J, De Backer G, Gohlke H, Graham I, Reiner Ž, Verschuren M, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012) The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur Heart J. 2012; 33(13):1635-701.

Sudheendran S, Chang CC, Deckelbaum RJ. N-3 vs. Saturated fatty acids: Effects on the arterial wall. Prostaglandins, leukotrienes, and essential fatty acids. 2010; 82(4-6):205-9. https://doi.org/10.1016/j.plefa.2010.02.020 PMid:20207121 PMCid: PMC2878127 DOI: https://doi.org/10.1016/j.plefa.2010.02.020

Santos S, Oliveira A, Lopes C. Systematic review of saturated fatty acids on inflammation and circulating levels of adipokines. Nutr Res. 2013; 33(9):687-95. https://doi. org/10.1016/j.nutres.2013.07.002 PMid:24034567 DOI: https://doi.org/10.1016/j.nutres.2013.07.002

Dong JY, Zhang ZL, Wang PY, Qin LQ. Effects of highprotein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: metaanalysis of randomised controlled trials. Br J Nutr. 2013; 110(5):781-9. https://doi.org/10.1017/S0007114513002055 PMid:23829939 DOI: https://doi.org/10.1017/S0007114513002055

Nieto FJ, Peppard PE, Engelman CD, McElroy JA, Galvao LW, Friedman EM, et al. The Survey of the Health of Wisconsin (SHOW), a novel infrastructure for population health research: rationale and methods. BMC Public Health. 2010; 10(1). https://doi.org/10.1186/1471-2458-10- 785 PMid:21182792 PMCid: PMC3022857 DOI: https://doi.org/10.1186/1471-2458-10-785

Ortiz M, Soto-Alarcón SA, Orellana P, Espinosa A, Campos C, López-Arana S, et al. Suppression of highfat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig Liver Dis. 2020; 52(8):895-904. https://doi.org/10.1016/j.dld.2020.04.019 PMid:32620521 DOI: https://doi.org/10.1016/j.dld.2020.04.019

Wiktorowska-Owczarek A, Berezińska M, Nowak J. PUFAs: Structures, metabolism and functions. Adv Clin Exp Med. 2015; 24(6):931-41. https://doi.org/10.17219/acem/31243 PMid:26771963 DOI: https://doi.org/10.17219/acem/31243

Assmann G, Cullen P, Jossa F, Lewis B, Mancini M. Coronary heart disease: Reducing the risk. Arterioscler Thromb Vasc Biol. 1999; 19(8):1819-24. https://doi.org/10.1161/01. ATV.19.8.1819 PMid:10446059 DOI: https://doi.org/10.1161/01.ATV.19.8.1819

Ginnan R, Guikema BJ, Halligan KE, Singer HA, Jourd’heuil D. Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radic Biol Med. 2008; 44(7):1232-45. https://doi.org/10.1016/j.freeradbiomed.2007.12.025 PMid:18211830 PMCid: PMC2390910 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.12.025

Madamanchi NR, Tchivilev I, Runge MS. Genetic markers of oxidative stress and coronary atherosclerosis. Curr Atheroscler Rep. 2006; 8(3):177-83. https://doi.org/10.1007/ s11883-006-0071-3 PMid:16640954 DOI: https://doi.org/10.1007/s11883-006-0071-3

Reddy AC, Lokesh BR. Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem. 1992; 111(1-2):117- 24. https://doi.org/10.1007/BF00229582 PMid:1588934 DOI: https://doi.org/10.1007/BF00229582

Shirzad H, Kiani M, Shirzad M. Impacts of tomato extract on the mice fibrosarcoma cells. J Herbmed Pharmacol. 2013; 2(1):13-16.

Sedighi M, Nasri H, Rafieian-kopaei M, Mortazaei S. Reversal effect of Achillea millefolium extract on ileum contractions. J Herbmed Pharmacol. 2013; 2(1):5-8.

Nasri H, Shirzad H. Toxicity and safety of medicinal plants. Journal of Herb Med Pharmacology. 2013; (2):21-2.

Previtera L, Monaco P. A linear diterpene diol from Lemna minor. Phytochemistry. 1984; 23(1):194-5. https://doi. org/10.1016/0031-9422(84)83111-8 DOI: https://doi.org/10.1016/0031-9422(84)83111-8

Sanjay SS, Gupta A, Mane VS, Shinde B. Immunopharmacological activity of flavonoids from Lemna minor (Duckweed) and determined its immunological activity. Current Life Sciences. 2017; 3(2):22-7.

Chakrabarti R, Clark WD, Sharma JG, Goswami RK, Shrivastav AK, Tocher DR. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front Chem. 2018; 6. https://doi.org/10.3389/fchem.2018.00479 PMid:30374437 PMCid: PMC6196230 DOI: https://doi.org/10.3389/fchem.2018.00479

Zhao Y, Dai X, Zhou Z, Zhao G, Wang X, Xu M. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol Sin. 2015; 37(2):196- 203. https://doi.org/10.1038/aps.2015.88 PMid:26687933 PMCid: PMC4753376 DOI: https://doi.org/10.1038/aps.2015.88

Trease GE, Evans WC. A textbook on pharmacognosy. 13th edition. London: Bailliere Tinall Ltd; 1989.

Sahu MA. Master of pharmacy in pharmacognosy. KLE University; 2011.

OECD. OECD Guidelines for the Testing of Chemicals. OECD; 1994.

Altman RFA. A simple method for the rapid production of atherosclerosis in rats. Experientia. 1973; 29(2):256-6. https://doi.org/10.1007/BF01945508 PMid:4632573 DOI: https://doi.org/10.1007/BF01945508

Sravanthi P, Shakir SB. The anti-atherosclerotic activity of ethanolic extract of Chrysanthemum indicum l. flowers against high-fat diet-induced atherosclerosis in male Wistar rats. Asian J Pharm Clin Res. 2017; 10(9):52. https:// doi.org/10.22159/ajpcr.2017.v10i9.19463 DOI: https://doi.org/10.22159/ajpcr.2017.v10i9.19463

Rao AV, Ramakrishnan S. Indirect assessment of Hydroxymethylglutaryl-CoA reductase activity in liver tissue. Clin Chem. 1975; 21(10):1523-5. https://doi. org/10.1093/clinchem/21.10.1523 DOI: https://doi.org/10.1093/clinchem/21.10.1523

Edwards CA, O’Brien WD. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta. 1980; 104(2):161-7. https://doi.org/10.1016/0009- 8981(80)90192-8 PMid:7389130 DOI: https://doi.org/10.1016/0009-8981(80)90192-8

Ledoux M, Lamy F. Determination of proteins and sulfobetaine with the folin-phenol reagent. Anal Biochem. 1986; 157(1):28-31. https://doi.org/10.1016/0003- 2697(86)90191-0 PMid:3766963 DOI: https://doi.org/10.1016/0003-2697(86)90191-0

Hron WT, Menahan LA. A sensitive method for the determination of free fatty acids in plasma. J Lipid Res. 1981; 22(2):377-81. https://doi.org/10.1016/S0022-2275(20)35381-5 DOI: https://doi.org/10.1016/S0022-2275(20)35381-5

Itaya K. A more sensitive and stable colourimetric determination of free fatty acids in blood. J Lipid Res. 1977; 18(5):663-5. https://doi.org/10.1016/S0022-2275(20)41609-8 PMid:903712 DOI: https://doi.org/10.1016/S0022-2275(20)41609-8

Onat A, Can G, Kaya H, Hergenç G. Atherogenic index of plasma (log10 triglyceride/high-density lipoprotein− cholesterol) predicts high blood pressure, diabetes, and vascular events. J Clin Lipidol. 2010; 4(2):89-98. https://doi. org/10.1016/j.jacl.2010.02.005 PMid:21122635 DOI: https://doi.org/10.1016/j.jacl.2010.02.005

Shrivastava A, Chaturvedi U, Singh SV, Saxena JK, Bhatia G. Lipid-lowering and antioxidant effect of miglitol in triton treated hyperlipidemic and high-fat diet-induced obese rats. Lipids. 2013; 48:597-607. https://doi.org/10.1007/ s11745-012-3753-3 PMid:23334955 DOI: https://doi.org/10.1007/s11745-012-3753-3

Demori I, Voci A, Fugassa E, Burlando B. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol. 2006; 40(3):185-91. https://doi.org/10.1016/j. alcohol.2006.12.006 PMid:17418698 DOI: https://doi.org/10.1016/j.alcohol.2006.12.006

Stocker R, Keaney Jr JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004; 84(4):1381-478. https:// doi.org/10.1152/physrev.00047.2003 PMid:15383655 DOI: https://doi.org/10.1152/physrev.00047.2003

Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T, Aviram M. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and atherosclerotic mice: A key role for triglyceride metabolism. J Nutr Biochem. 2017; 45:24-38. https://doi. org/10.1016/j.jnutbio.2017.02.023 PMid:28431321 DOI: https://doi.org/10.1016/j.jnutbio.2017.02.023

Wilund KR, Yu L, Xu F, Hobbs HH, Cohen JC. High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr−/− mice. J Lipid Res. 2004; 45(8):1429-36. https://doi.org/10.1194/ jlr.M400167-JLR200 PMid:15175362 DOI: https://doi.org/10.1194/jlr.M400167-JLR200

Grajeda‐Iglesias C, Rom O, Hamoud S, Volkova N, Hayek T, Abu‐Saleh N, Aviram M. Leucine supplementation attenuates macrophage foam‐cell formation: Studies in humans, mice, and cultured macrophages. Biofactors. 2018; 44(3):245-62. https://doi.org/10.1002/biof.1415 PMid:29399895 DOI: https://doi.org/10.1002/biof.1415

Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sports medicine. Br Med Bull. 2007; 81(1):209- 30. https://doi.org/10.1093/bmb/ldm014 PMid:17569697 DOI: https://doi.org/10.1093/bmb/ldm014

Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine supplementation: A novel strategy for modulating lipid metabolism and energy homeostasis. Nutrients. 2020; 12(5):1299. https://doi.org/10.3390/ nu12051299 PMid:32370170 PMCid: PMC7282259 DOI: https://doi.org/10.3390/nu12051299

Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992; 33(11):1569-82. https:// doi.org/10.1016/S0022-2275(20)41379-3 PMid:1464741 DOI: https://doi.org/10.1016/S0022-2275(20)41379-3

Duan Y, Li F, Li Y, Tang Y, Kong X, Feng Z, Anthony TG, Watford M, Hou Y, Wu G, Yin Y. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids. 2016; 48:41-51. https://doi.org/10.1007/s00726-015- 2067-1 PMid:26255285 DOI: https://doi.org/10.1007/s00726-015-2067-1