Avena sativa’s Therapeutic Potential: Exploring Antiasthmatic Effects in Guinea Pig Asthma Model

Jump To References Section

Authors

  • Department of Pharmacology, SIMS College of Pharmacy, Guntur - 522509, Andhra Pradesh ,IN
  • Department of Pharmacology, SIMS College of Pharmacy, Guntur - 522509, Andhra Pradesh ,IN
  • Department of Pharmaceutics, Hindu College of Pharmacy, Guntur - 522002, Andhra Pradesh ,IN
  • Department of Pharmaceutics, Hindu College of Pharmacy, Guntur - 522002, Andhra Pradesh ,IN
  • Department of Pharmaceutical Analysis, SIMS College of Pharmacy, Guntur - 522509, Andhra Pradesh ,IN
  • Department of Pharmaceutical Analysis, SIMS College of Pharmacy, Guntur - 522509, Andhra Pradesh ,IN
  • Department of Pharmacy Practice, Shri Vishnu College of Pharmacy, Kovvada - 534202, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i1/35855

Keywords:

Avena sativa, Asthma, Anti-Inflammatory, Antioxidative, Guinea Pig Model, Histamine, Ovalbumin

Abstract

Avena sativa (oat) has emerged as a potential therapeutic candidate for asthma, a global health challenge characterized by chronic airway inflammation. This research investigates the anti-asthmatic potential of the Hydro-Alcoholic Extract of Avena sativa (HAEAS) in a guinea pig asthma model induced by histamine and ovalbumin. The study explores the influence of HAEAS on oxidative stress markers, leucocytes, eosinophils, and histopathological changes in lung tissues. Results reveal that HAEAS, particularly at 400 mg/kg, significantly increases the latent period and percentage protection in histamine induced bronchospasm. In ovalbumin-sensitized guinea pigs, HAEAS demonstrates a notable reduction in total leucocyte count, eosinophils, neutrophils, and macrophages in bronchoalveolar lavage fluid. Moreover, HAEAS exhibits antioxidative effects by increasing superoxide dismutase levels and decreasing malondialdehyde levels. Histopathological analysis demonstrates a decrease in inflammatory cell infiltration, hyperplasia, and bronchoconstriction. This study highlights the potential of Avena sativa as a novel therapeutic avenue for asthma, offering anti-inflammatory and antioxidant benefits.

Downloads

Download data is not yet available.

Published

2024-02-28

How to Cite

Yerragopu, A. K., Anusha, V. L., Aslam, S., Rajesh, A., Sirisha, Y., Harini, A. L., & Ali, S. F. (2024). <i>Avena sativa’s</i> Therapeutic Potential: Exploring Antiasthmatic Effects in Guinea Pig Asthma Model. Toxicology International, 31(1), 101–109. https://doi.org/10.18311/ti/2024/v31i1/35855
Received 2023-12-12
Accepted 2024-01-09
Published 2024-02-28

 

References

Devereux G, Matsui EC, Burney PGJ. Epidemiology of asthma and allergic airway diseases. Middleton’s Allergy. Elsevier. 2014; 754-89. https://doi.org/10.1016/B978-0- 323-08593-9.00049-8 DOI: https://doi.org/10.1016/B978-0-323-08593-9.00049-8

Pal R, Dahal S, Pal S. Prevalence of bronchial asthma in Indian children. Indian J Community Med. 2009; 34(4):310-6. https://doi.org/10.4103/0970-0218.58389 DOI: https://doi.org/10.4103/0970-0218.58389

Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019; 7:246. https://doi.org/10.3389/fped.2019.00246 DOI: https://doi.org/10.3389/fped.2019.00246

Peebles RS, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma. Clin Chest Med. 2019; 40(1):29-50. https://doi.org/10.1016/j.ccm.2018.10.014 DOI: https://doi.org/10.1016/j.ccm.2018.10.014

Yamauchi K, Ogasawara M. The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. Int J Mol Sci. 2019; 20(7). https://doi.org/10.3390/ijms20071733

Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy. 2012; 42(9):1313-20. https://doi.org/10.1111/j.1365- 2222.2012.03982.x DOI: https://doi.org/10.1111/j.1365-2222.2012.03982.x

Ernst E, Posadzki P. Alternative therapies for asthma: Are patients at risk? Clin Med. 2012; 12(5):427-9. https://doi. org/10.7861/clinmedicine.12-5-427 DOI: https://doi.org/10.7861/clinmedicine.12-5-427

Singh R, De S, Belkheir A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview. Crit Rev Food Sci Nutr. 2013; 53(2):126-44. https://doi.org/10. 1080/10408398.2010.526725 DOI: https://doi.org/10.1080/10408398.2010.526725

Saka VP, Challa SR, Raju AB. Effect of Avena sativa (oats) on spermatogenesis and reproductive health. J Endocrinol Reprod. 2016; 20(2):83-92.

Sharma V, Boonen J, De Spiegeleer B, Dixit VK. Androgenic and spermatogenic activity of alkylamide-rich ethanol solution extract of anacyclus pyrethrum dc. Phyther Res. 2013; 27(1):99-106. https://doi.org/10.1002/ptr.4697 DOI: https://doi.org/10.1002/ptr.4697

Antwi AO, Obiri DD, Osafo N. Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma. Mediators Inflamm. 2017; 2017:2953930. https://doi.org/10.1155/2017/2953930 DOI: https://doi.org/10.1155/2017/2953930

Flack CP, Woollen JW. Prevention of interference by dextran with biuret-type assay of serum proteins. Clin Chem. 1984; 30(4):559-61. https://doi.org/10.1093/clinchem/30.4.559 DOI: https://doi.org/10.1093/clinchem/30.4.559

Marklund S, Marklund G. Involvement of the Superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47(3):469-74. https://doi. org/10.1111/j.1432-1033.1974.tb03714.x DOI: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-8. https://doi.org/10.1016/0003- 2697(79)90738-3 DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Yamauchi K, Ogasawara M. The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. Int J Mol Sci. 2019; 20(7):1733. https://doi.org/10.3390/ijms20071733 DOI: https://doi.org/10.3390/ijms20071733

Hough KP, Curtiss ML, Blain TJ, et al. Airway Remodeling in Asthma. Front Med. 2020; 7:191. https://doi.org/10.3389/ fmed.2020.00191 DOI: https://doi.org/10.3389/fmed.2020.00191

Park HS, Kim SR, Kim JO, Lee YC. The roles of phytochemicals in bronchial asthma. Molecules. 2010; 15(10):6810-34. https://doi.org/10.3390/molecules15106810 DOI: https://doi.org/10.3390/molecules15106810

Ammar M, Bahloul N, Amri O, et al. Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J Clin Lab Anal. 2022; 36(5):e24345. https://doi. org/10.1002/jcla.24345 DOI: https://doi.org/10.1002/jcla.24345

Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: A methodological review. Tob Induc Dis. 2017; 15:25. https://doi.org/10.1186/ s12971-017-0130-2 DOI: https://doi.org/10.1186/s12971-017-0130-2