Effect of Iron Overload on Tight Junctions and Adhesion Molecules in ECV304 Cells
DOI:
https://doi.org/10.18311/ti/2024/v31i3/35986Keywords:
Blood- Brain Barrier, ECV-304, Gene Expression Analysis, Iron OverloadAbstract
Blood vessels are essential for the body’s tissues and organs to receive oxygen and nutrition. The Blood-Brain Barrier (BBB) is a special feature of the blood arteries that vascularise the Central Nervous System (CNS) which enables these vessels to tightly control the flow of ions and molecules between the blood and the brain. The accurate regulation of CNS homeostasis facilitates appropriate neuronal performance and safeguards neural tissue from toxins and pathogens. Modifications to these barrier characteristics play a significant role in the development of many neurological disorders. BBB contains tight junction transmembrane proteins, integral membrane proteins, occludin, claudins, IgG-type proteins, junction adhesion molecules and scaffold proteins. Numerous biological functions require iron in the CNS, including neurotransmitter synthesis, myelin formation and mitochondrial function. However, excess iron can lead to oxidative stress and damage, which are implicated in neurodegenerative diseases. In this research, the impacts of iron accumulation on Cadherin 5 (CDH5), Claudin 5 (CLDN5), Intercellular Adhesion Molecule 1 (ICAM-1), Occludin (OCL), p-selectin (P-SEL), Vascular Cell Adhesion Molecule 1 (VCAM-1) and Zonula occludens-1 (ZO-1) genes expressions in Human Umbilical Vein Endothelial Cells (ECV 304) cells were investigated. It was found that in human umbilical vein endothelial cell line cells, iron overload enhanced the expression of CDH5 and P-SEL genes while reducing the expression of VCAM1, Cldn5, ICAM-1, OCL, and Zo-1 genes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Samed Refik Sar, Furkan Meric, Aysegul Yanik Ilgar, Irem Gulfem Albayrak, Belkis Atasever Arslan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-02-23
Published 2024-06-10
References
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008; 57(2):178-201. https://doi.org/10.1016/j.neuron.2008.01.003 PMid:18215617. DOI: https://doi.org/10.1016/j.neuron.2008.01.003
Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012; 72(5):648-72. https://doi.org/10.1002/ ana.23648 PMid:23280789. DOI: https://doi.org/10.1002/ana.23648
Larsen J, Martin D, Byrne M. Recent advances in delivery through the blood-brain barrier. Curr Top Med Chem. 2014; 14(9):1148-60. https://doi.org/10.2174/15680266146 66140329230311 PMid:24678707. DOI: https://doi.org/10.2174/1568026614666140329230311
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 ; 7(1):a020412. https://doi. org/10.1101/cshperspect.a020412 PMid:25561720 PMCid: PMC4292164. DOI: https://doi.org/10.1101/cshperspect.a020412
Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016; 4(1):e1154641. https://doi.org/10.1080/21688370.2016.115 4641 PMid:27141427 PMCid: PMC4836471. DOI: https://doi.org/10.1080/21688370.2016.1154641
Yang F, Zhao K, Zhang X, et al. ATP induces disruption of tight junction proteins via IL-1 beta-dependent MMP-9 activation of the human blood-brain barrier in Vitro. Neural Plast. 2016. p. 8928530. https://doi.org/10.1155/2016/8928530 PMid:27795859 PMCid: PMC5067334. DOI: https://doi.org/10.1155/2016/8928530
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012; 32(11):1959-72. https://doi.org/10.1038/jcbfm.2012.126 PMid:22929442 PMCid: PMC3494002. DOI: https://doi.org/10.1038/jcbfm.2012.126
Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008; 28(2):223- 32. https://doi.org/10.1161/ATVBAHA.107.158014 PMid:18162609.
Kartikasari AER, Georgiou NA, Visseren FLJ, et al. Endothelial activation and induction of monocyte adhesion by nontransferrin-bound iron present in human sera. FASEB J. 2006; 20(2):353-5. https://doi.org/10.1096/fj.05- 4700fje PMid:16368718. DOI: https://doi.org/10.1096/fj.05-4700fje
Atasever Arslan B, Satıcı I. et al. Protective effects of folic acid and vitamin C against iron overload at the in vitro blood-brain barrier. Int J Life Sci Biotechnol. 2021; 4:353-9. https://doi.org/10.38001/ijlsb.886008 DOI: https://doi.org/10.38001/ijlsb.886008
Lagrange P, Romero IA, Minn A, Revest PA. Transendothelial permeability changes induced by free radicals in an in vitro model of the blood-brain barrier. Free Radic Biol Med. 1999; 27:(5-6)667-72. https://doi.org/10.1016/S0891- 5849(99)00112-4 PMid:10490287. DOI: https://doi.org/10.1016/S0891-5849(99)00112-4
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001; 402-8. https://doi. org/10.1006/meth.2001.1262 PMid:11846609. DOI: https://doi.org/10.1006/meth.2001.1262
Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S. Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoSOne. 2014; 9(1):e85115. https://doi. org/10.1371/journal.pone.0085115 PMid:24400127 PMCid: PMC3882264. DOI: https://doi.org/10.1371/journal.pone.0085115
Lockman JA, Geldenhuys WJ, Bohn KA, et al. Differential effect of Nimodipine in attenuating iron-induced toxicity in brain- and blood-brain barrier-associated cell types. Neurochem Res. 2012; 37(1):134-42. https://doi. org/10.1007/s11064-011-0591-2 PMid:21935732. DOI: https://doi.org/10.1007/s11064-011-0591-2
Haorah J, Ramirez SH, Schall K, et al. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem. 2007; 101(2):566-76. https:// doi.org/10.1111/j.1471-4159.2006.04393.x PMid:17250680. DOI: https://doi.org/10.1111/j.1471-4159.2006.04393.x
Monnot AD, Zheng G, Zheng W. Mechanism of copper transport at the blood-cerebrospinal fluid barrier: influence of iron deficiency in an in vitro model. Exp Biol Med (Maywood). 2012; 237(3):327-33. https://doi.org/10.1258/ ebm.2011.011170 PMid:22442359 PMCid: PMC3982225. DOI: https://doi.org/10.1258/ebm.2011.011170
Skjørringe T, Møller LB, Moos T. Impairment of interrelated iron- and copper homeostatic mechanisms in the brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol. 2012; 3:169. https://doi. org/10.3389/fphar.2012.00169 PMid:23055972 PMCid: PMC3456798. DOI: https://doi.org/10.3389/fphar.2012.00169
Carmeliet P, Lampugnani MG, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999; 98(2):147-57. https://doi. org/10.1016/S0092-8674(00)81010-7 PMid:10428027. DOI: https://doi.org/10.1016/S0092-8674(00)81010-7
Crosby CV, Fleming PA, et al. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood. 2005; 105(7):2771- 6. https://doi. org/10.1182/blood-2004-06-2244 PMid:15604224. DOI: https://doi.org/10.1182/blood-2004-06-2244
Broman MT, Kouklis P, et al. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ Res. 2006; 98(1):73-80. https://doi. org/10.1161/01.RES.0000198387.44395.e9 PMid:16322481. DOI: https://doi.org/10.1161/01.RES.0000198387.44395.e9
Montero-Balaguer M, Swirsding K, et al. Stable vascular connections and remodeling require full expression of VE-cadherin in zebra fish embryos. PLoSOne. 2009; 4(6):e5772. https://doi.org/10.1371/journal.pone.0005772 PMid:19503615 PMCid: PMC2685470. DOI: https://doi.org/10.1371/journal.pone.0005772
Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler. Thromb Vasc Biol. 2008; 28(2):223- 22. https://doi.org/10.1161/ATVBAHA.107.158014 PMid:18162609. DOI: https://doi.org/10.1161/ATVBAHA.107.158014
Zhu W, London NR, et al, Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature. 2012; 492(7428):252-5. https://doi.org/10.1038/ nature11603 PMid:23143332 PMCid: PMC3521847. DOI: https://doi.org/10.1038/nature11603
Jung KH, Chu K, Lee S T, et al, Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol. 2009; 66(2):191-9. https://doi.org/10.1002/ ana.21681 PMid:19743467. DOI: https://doi.org/10.1002/ana.21681
Li P, Qin C. Elevated circulating VE-cadherin+ CD144+ endothelial microparticles in ischemic cerebrovascular disease. Thromb Res. 2015; 135(2):375-81. https://doi. org/10.1016/j.thromres.2014.12.006 PMid:25523345. DOI: https://doi.org/10.1016/j.thromres.2014.12.006
Greene C, Hanley N, Campbell M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS. 2019; 16:3. https://doi.org/10.1186/s12987-019-0123-z PMid:30691500 PMCid: PMC6350359. DOI: https://doi.org/10.1186/s12987-019-0123-z
Stockwell BR, et al, Ferroptosis: A regulated cell death nexus linking metabolism, redox biology and disease. Cell. 2017; 171:273-85. https://doi.org/10.1016/j.cell.2017.09.021 PMid:28985560 PMCid: PMC5685180. DOI: https://doi.org/10.1016/j.cell.2017.09.021
Gao M, Jiang X. To eat or not to eat, the metabolic flavour of ferroptosis. Curr Opin Cell Biol. 2018; 51:58-64. https:// doi.org/10.1016/j.ceb.2017.11.001 PMid:29175614 PMCid: PMC5949249. DOI: https://doi.org/10.1016/j.ceb.2017.11.001
Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN, Jiang X. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019; 572(7769):402-6. https://doi.org/10.1038/s41586-019- 1426-6 PMid:31341276 PMCid: PMC6697195. DOI: https://doi.org/10.1038/s41586-019-1426-6
Madsen MC, Podieh F, Overboom MC, Thijs A, den Heijer M, Hordijk PL, The effect of circulating iron on barrier integrity of primary human endothelial cells. Sci Rep. 2023; 13(1):16857. https://doi.org/10.1038/s41598-023-44122-6 PMid:37803072 PMCid: PMC10558552. DOI: https://doi.org/10.1038/s41598-023-44122-6
Elices MJ, Osborn L, et al. VCAM-1 on activate endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 1990; 60 577-84. https://doi.org/10.1016/0092-8674(90)90661-W PMid:1689216. DOI: https://doi.org/10.1016/0092-8674(90)90661-W
Haarmann A, Nowak E, Deiß A, et al. Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol. 2015; 639-52. https://doi.org/10.1007/ s00401-015-1417-0 PMid:25814153 PMCid: PMC4405352. DOI: https://doi.org/10.1007/s00401-015-1417-0
Peterson JW, Bö L, et al. VCAM- 1 positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol. 2002; 61(6):539-46. https://doi. org/10.1093/jnen/61.6.539 PMid:12071637. DOI: https://doi.org/10.1093/jnen/61.6.539
Wang Q, Luo W, Zheng W, et al. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol Appl Pharmacol. 2007; 219:33-41. https://doi.org/10.1016/j.taap.2006.11.035 PMid:17234227 PMCid: PMC3982216. DOI: https://doi.org/10.1016/j.taap.2006.11.035
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A Role for P-selectin and complement in the pathological sequelae of germinal matrix haemorrhage. J Neuroinflammation. 2023; 20(1):143. https://doi.org/10.1186/s12974-023-02828-4 PMid:37322469 PMCid: PMC10273747. DOI: https://doi.org/10.1186/s12974-023-02828-4
Dong X Y, Gao J, et al, Wang Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke ACS Nano. 2019; 13:1272-83. https://doi.org/10.1021/acsnano.8b06572 PMid:30673266 PMCid: PMC6424134. DOI: https://doi.org/10.1021/acsnano.8b06572