Heavy Metals in Fishes, Water and Macrophyte of the Ganga River and Risk Related to their Consumption
DOI:
https://doi.org/10.18311/ti/2024/v31i3/36636Keywords:
Eichornia crassipes, Fishes, Ganga, Heavy Metals, RiverAbstract
The study was conducted along the Ganga River and aimed to assess the contamination levels of six heavy metals (Pb, Cd, Hg, Cu, Cr, and Zn) in fishes, water, and macrophyte (Eichornia crassipes) of Haridwar (Bhadrabad - A1), Bijnor (Near Ravidas temple-A2) and Muzaffarnagar (Bairaj Ganga bridge-A3) using a flame atomic absorption spectrophotometer (Avanta Σ). The findings revealed a concerning level of heavy metal contamination in various components of the Ganga River ecosystem. In fishes, the order of heavy metal occurrence was Cr>Zn>Pb>Cu>Cd>Hg, with Pb levels exceeding the recommended WHO/FAO limits in some samples. Water samples showed heavy metals in the order Pb>Cu>Zn>Cr>Cd>Hg, with elevated levels of Pb and Cr at site Haridwar (Bhadrabad - A1) exceeding WHO’s maximum permissible limits. Macrophyte analysis indicated heavy metals in the order Zn>Cr>Pb>Cu>Hg>Cd, with Pb and Cr levels surpassing WHO recommendations. The heavy metal bioaccumulation was higher during the post-monsoon and pre-monsoon seasons while lower in the monsoon season. Significant differences in heavy metal concentrations among different organs of fishes highlight the variability in metal accumulation and distribution. The study underscores the importance of regular biomonitoring to assess the risks posed by heavy metals, especially considering the significant reliance of the local population on the Ganga River for various purposes. Continued monitoring and implementation of mitigation measures are essential to safeguard human health and the integrity of the ecosystem in the face of heavy metal contamination.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sumit Kumar, Amita Saxena, R. K. Srivastava, S. B. Singh, R. N. Ram, N. N. Pandey
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-05-09
Published 2024-05-30
References
Elekes CC, Busuioc G, Ionita G. The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms. Notulae Botanicae Horti Agrobotanici Cluj- Napoca. 2010; 38(2):147-51.
Matta G, Dhingra GK, Kumar A, Nayak A, Kumar P, Kumar N. Environmental repercussions of anthropogenic activities on water quality of River Ganga in Uttarakhand. J Env Bio- Sci. 2018; 32(2):359-64.
Sharma RK, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf. 2007; 66(2):258-66. https://doi.org/10.1016/j.ecoenv.2005.11.007 PMid:16466660
Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003; 68(1):167-82. https://doi.org/10.1093/bmb/ ldg032 PMid:14757716 DOI: https://doi.org/10.1093/bmb/ldg032
Sulaiman MA, Kumari A. Investigating pollution, and associated non-carcinogenic, and carcinogenic health hazard with the consumption of 15 commercially important fish species of the middle stretch of River Ganga at Patna, India.
Ammann AA. Speciation of heavy metals in environmental water by ion chromatography coupled to ICP-MS. Anal Bioanal Chem. 2002; 372:448-52. https://doi.org/10.1007/ s00216-001-1115-8 PMid:11939532 DOI: https://doi.org/10.1007/s00216-001-1115-8
Fernandez-Leborans G, Herrero YO. Toxicity and bioaccumulation of lead and cadmium in marine protozoan communities. Ecotoxicol Environ Saf. 2000; 47(3):266-76. https://doi.org/10.1006/eesa.2000.1944 PMid:11139180 DOI: https://doi.org/10.1006/eesa.2000.1944
Burger J, Gochfeld M. Heavy metals in commercial fish in New Jersey. Environ Res. 2005; 99(3):403-12. https://doi. org/10.1016/j.envres.2005.02.001 PMid:16307983 DOI: https://doi.org/10.1016/j.envres.2005.02.001
Bervoets L, Blust R. Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: Relationship with fish condition factor. Environ Pollut. 2003;126(1):9-19. https://doi.org/10.1016/S0269- 7491(03)00173-8 PMid:12860098 DOI: https://doi.org/10.1016/S0269-7491(03)00173-8
Yarsan E, Yipel M. The important terms of marine pollution “biomarkers and biomonitoring, bioaccumulation, bioconcentration, biomagnification”. J Mol Biomark Diagn S. 2013; 1(2). https://doi.org/10.4172/2155-9929.S1-003 DOI: https://doi.org/10.4172/2155-9929.S1-003
Saleh YS, Marie MA. Assessment of metal contamination in water, sediment, and tissues of Arius thalassinus fish from the Red Sea coast of Yemen and the potential human risk assessment. Environ Sci Pollut Res Int. 2015; 22:5481-90. https://doi.org/10.1007/s11356-014-3780-0 PMid:25380631 DOI: https://doi.org/10.1007/s11356-014-3780-0
Malik A, Qadri SA, Musarrat J, Ahmad M. Studies on the water quality of River Ganga at Fatehgarh and Kannauj, UP, India. Environ. Toxicol Water Qual. 1995; 10(2):91-5. https://doi.org/10.1002/tox.2530100203 DOI: https://doi.org/10.1002/tox.2530100203
Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, et al. Assessment of the surface water quality in Northern Greece. Water Res. 2003; 37(17):4119- 24. https://doi.org/10.1016/S0043-1354(03)00398-1 PMid:12946893 DOI: https://doi.org/10.1016/S0043-1354(03)00398-1
Sani HA, Tsafe AI, Bagudo BU, Itodo AU. Toxic metals uptake by spinach (Spinacea oleracea) and lettuce (Lactuca sativa) cultivated in sokoto: A comparative study. Pak J Nutr. 2011; 10(6):572-6. https://doi.org/10.3923/pjn.2011.572.576 DOI: https://doi.org/10.3923/pjn.2011.572.576
Tiwari A, Dwivedi AC, Mayank P. Time scale changes in the water quality of the Ganga River, India and estimation of suitability for exotic and hardy fishes. Hydrol Curr Res. 2016; 7(3):254. https://doi.org/10.4172/2157-7587.1000254 DOI: https://doi.org/10.4172/2157-7587.1000254
Collvin L. The effect of copper on growth, food consumption and food conversion of perch Perca fluviatilis L. offered maximal food rations. Aquat Toxicol. 1985; 6(2):105-13. https://doi.org/10.1016/0166-445X(85)90010-4 DOI: https://doi.org/10.1016/0166-445X(85)90010-4
Pal S, Chakraborty S, Datta S, Mukhopadhyay SK. Spatiotemporal variations in total carbon content in contaminated surface waters at East Kolkata Wetland Ecosystem, a Ramsar Site. Ecol Eng. 2018; 110:146-57. Https://doi.org/10.1016/j. ecoleng.2017.11.009 DOI: https://doi.org/10.1016/j.ecoleng.2017.11.009
Ahmed AS, Hossain MB, Semme SA, Babu SM, Hossain K, Moniruzzaman M. Accumulation of trace elements in selected fish and shellfish species from the largest natural carp fish breeding basin in Asia: A probabilistic human health risk implication. Environ Sci Pollut Res. 2020; 27:37852-65. Https://doi.org/10.1007/s11356-020-09766-1 PMid:32613505 DOI: https://doi.org/10.1007/s11356-020-09766-1
Qadir A, Malik RN. Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol Trace Elem Res. 2011; 143:1524-40. https://doi.org/10.1007/s12011-011-9011-3 PMid:21424780 DOI: https://doi.org/10.1007/s12011-011-9011-3
Zhao S, Feng C, Quan W, Chen X, Niu J, Shen Z. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar Pollut Bull. 2012; 64(6):1163-71. https://doi. org/10.1016/j.marpolbul.2012.03.023 PMid:22551849 DOI: https://doi.org/10.1016/j.marpolbul.2012.03.023
Dural M, Göksu MZ, Özak AA. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem. 2007; 102(1):415-21. https://doi.org/10.1016/j.foodchem.2006.03.001 DOI: https://doi.org/10.1016/j.foodchem.2006.03.001
FAO/WHO (Food and Agriculture Organization/ World Health Organization). Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA 1956-2003), (first through sixty first meetings). ILSI Press International Life Sciences Institute, Geneva; 2004.
Eisler R. Arsenic hazards to fish, wildlife, and invertebrates: A synoptic review. Fish and Wildlife Service, US Department of the Interior; 1988.
Buckley DE, Hargrave BT, Nicholls HB. Geochemical characteristics of surface sediments. Investigations of Marine environmental. Can Tech Rep Fish Aquat Sci. 1989; 4-31.
Mackeviciene G. Bioaccumulation of heavy metals in noble crayfish (Astacus astacus L.) tissues under aquaculture conditions. Ekologija (Vilnius). 2002; 2:79-82.
Alam MG, Snow ET, Tanaka A. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ. 2003; 308(1-3):83-96. https:// doi.org/10.1016/S0048-9697(02)00651-4 PMid:12738203 DOI: https://doi.org/10.1016/S0048-9697(02)00651-4
Usman QA, Muhammad S, Ali W, Yousaf S, Jadoon IA. Spatial distribution and provenance of heavy metal contamination in the sediments of the Indus River and its tributaries, North Pakistan: Evaluation of pollution and potential risks. Environ Technol Innov. 2021; 21:101184. https://doi.org/10.1016/j.eti.2020.101184 DOI: https://doi.org/10.1016/j.eti.2020.101184
Ahmad AK, Shuhaimi-Othman M. Heavy metal concentrations in sediments and fishes from Lake Chini, Pahang, Malaysia. J Biol Sci. 2010; 10(2):93-100. https://doi.org/10.3923/jbs.2010.93.100 29. Mason CF. Biology of freshwater pollution. Pearson Education; 2002. DOI: https://doi.org/10.3923/jbs.2010.93.100
Storelli MM. Potential human health risks from metals (Hg, Cd, and Pb) and Polychlorinated Biphenyls (PCBs) via seafood consumption: estimation of Target Hazard Quotients (THQs) and Toxic Equivalents (TEQs). Food Chem Toxicol. 2008; 46(8):2782-8. https://doi. org/10.1016/j.fct.2008.05.011 PMid:18584931 DOI: https://doi.org/10.1016/j.fct.2008.05.011
Karadede H, Oymak SA, Ünlü E. Heavy metals in mullet, Liza abu, and catfish, Silurus triostegus, from the Atatürk Dam Lake (Euphrates), Turkey. Environ Int. 2004; 30(2):183-8. https:// doi.org/10.1016/S0160-4120(03)00169-7 PMid:14749107 DOI: https://doi.org/10.1016/S0160-4120(03)00169-7
Ongley ED, Xiaolan Z, Tao Y. Current status of agricultural and rural non-point source pollution assessment in China. Environ Poll. 2010; 158(5):1159-68. https://doi. org/10.1016/j.envpol.2009.10.047 PMid:19931958 DOI: https://doi.org/10.1016/j.envpol.2009.10.047
Wang L, Guo Z, Xiao X, Chen T, Liao X, Song J, et al. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province. J Geogr Sci. 2008; 18:353-62. https://doi.org/10.1007/ s11442-008-0353-5 DOI: https://doi.org/10.1007/s11442-008-0353-5
Sharma RK, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. J Geogr Sci. 2007; 66(2):258-66. https://doi. org/10.1016/j.ecoenv.2005.11.007 PMid:16466660 DOI: https://doi.org/10.1016/j.ecoenv.2005.11.007
El-Sayed ES, Khater Z, El-Ayyat M, Nasr ES. Assessment of heavy metals in water, sediment and fish tissues, from, Sharkia province, Egypt. Egypt J Aquat Biol Fish. 2011; 15(2):125-44. https://doi.org/10.21608/ejabf.2011.2097 DOI: https://doi.org/10.21608/ejabf.2011.2097
Dixit, Savita, Tiwari S. Impact assessment of heavy metal pollution of Shahpura Lake, Bhopal, India; 2008. p. 37-42.
Mohiuddin KM, Otomo K, Ogawa Y, Shikazono N. Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environ Monit Assess. 2012; 184:265-79. https://doi.org/10.1007/s10661- 011-1966-1 PMid:21404013 DOI: https://doi.org/10.1007/s10661-011-1966-1
Das S, Ghosh T, Walton RE, Zheng Y, Bass AM, McGowan S, et al. The Indian Sundarbans: Biogeochemical Dynamics and Anthropogenic Impacts. Estuarine Biogeochemical Dynamics of the East Coast of India; 2021. DOI: https://doi.org/10.1007/978-3-030-68980-3
Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Hoque MF. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci. 2015; 73:1837-48. https://doi.org/10.1007/ s12665-014-3538-5 DOI: https://doi.org/10.1007/s12665-014-3538-5
Adamu CI, Nganje TN, Edet A. Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria Environ Nanotechnol Monit Manag. 2015; 3:10-21. https:// doi.org/10.1016/j.enmm.2014.11.001 DOI: https://doi.org/10.1016/j.enmm.2014.11.001
Kar D, Sur P, Mandai SK, Saha T, Kole RK. Assessment of heavy metal pollution in surface water. Int J Environ Sci Tech. 2008; 5:119-24. https://doi.org/10.1007/BF03326004 DOI: https://doi.org/10.1007/BF03326004
Rabie F, Fawzy A, Khader MY, Hussein W. Contents of biogenic and non-biogenic heavy metals in El-Saff soils as related to different pollution sources.
Padma S, Periakali P. Cadmium in Pulicat lake sediments, east coast of India. Environ. Geochem. 1998; 1(2):55-8.
Zhu M, Li Y, Niu Y, Li J, Qin Z. Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: A novel signaling by which bisphenols disrupt vertebrate development. Environ Pollut. 2020; 263:114443. https://doi.org/10.1016/j.envpol.2020.114443 PMid:32311622 DOI: https://doi.org/10.1016/j.envpol.2020.114443
Sharma S, Singh B, Manchanda VK. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res. 2015; 22:946-62. https://doi.org/10.1007/s11356-014-3635-8 PMid:25277712 DOI: https://doi.org/10.1007/s11356-014-3635-8
World Health Organization. Guidelines for drinking-water quality: Incorporating first and second addenda. Vol. 1. World Health Organization, Geneva; 2008.
Miretzky P, Saralegui A, Cirelli AF. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosp. 2004; 57(8):997- 1005. https://doi.org/10.1016/j.chemosphere.2004.07.024 PMid:15488590 DOI: https://doi.org/10.1016/j.chemosphere.2004.07.024
Flora G, Gupta D, Tiwari A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. 2012; 5(2):47-58. https:// doi.org/10.2478/v10102-012-0009-2 PMid:23118587 PMCid:PMC3485653 DOI: https://doi.org/10.2478/v10102-012-0009-2
Gupta M, Chandra P. Lead accumulation and toxicity in Vallisneria spiralis.(L.) and Hvdrilla vertieillata (LF) Royle. J Environ Sci Health Part A. 1994; 29(3):503-16. https://doi.org/10.1080/10934529409376051 DOI: https://doi.org/10.1080/10934529409376051
Rai UN, Sinha S, Tripathi RD, Chandra P. Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng. 1995; 5(1):5-12. https://doi.org/10.1016/0925-8574(95)00011-7 DOI: https://doi.org/10.1016/0925-8574(95)00011-7
Mishra VK, Tripathi BD, Kim KH. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater. 2009; 172(2-3):749-54. https:// doi.org/10.1016/j.jhazmat.2009.07.059 PMid:19665290 DOI: https://doi.org/10.1016/j.jhazmat.2009.07.059
Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH. Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess. 2019; 191(2):104. https://doi. org/10.1007/s10661-019-7245-2 PMid:30685798 DOI: https://doi.org/10.1007/s10661-019-7245-2
Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals- Concepts and applications. Chemosph. 2013; 91(7):869-81. https://doi.org/10.1016/j.chemosphere.2013.01.075 PMid:23466085 DOI: https://doi.org/10.1016/j.chemosphere.2013.01.075
Galal TM, Shehata HS. Evaluation of the invasive macrophyte Myriophyllum spicatum L. as a bioaccumulator for heavy metals in some watercourses of Egypt. Ecol Indic. 2014; 41:209-14. https://doi.org/10.1016/j.ecolind.2014.02.004 DOI: https://doi.org/10.1016/j.ecolind.2014.02.004
Fawzy MA, Badr NE, El-Khatib A, Abo-El-Kassem A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 2012; 184:1753-71. https://doi.org/10.1007/ s10661-011-2076-9 PMid:21562793 DOI: https://doi.org/10.1007/s10661-011-2076-9
Mishra SS, Mishra A. Assessment of physico-chemical properties and heavy metal concentration in Gomati river. Res Environ Sci. 2008; 1(2):55-8.
Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosp. 2003; 51(8):633-42. https://doi.org/10.1016/ S0045-6535(03)00217-0 PMid:12668021 DOI: https://doi.org/10.1016/S0045-6535(03)00217-0
Kaushik A, Kansal A, Kumari S, Kaushik CP. Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. J Hazard Mater. 2009; 164(1):265-70. https://doi.org/10.1016/j. jhazmat.2008.08.031 PMid:18809251 DOI: https://doi.org/10.1016/j.jhazmat.2008.08.031
Ghaderian SM, Ravandi AA. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran J Geochem Explor. 2012; 123:25-32. https://doi.org/10.1016/j.gexplo.2012.06.022 DOI: https://doi.org/10.1016/j.gexplo.2012.06.022
World Health Organization (WHO). Permissible limits of heavy metals in soil and plants. Geneva, Switzerland; 1996.
Bala R, Dixit A, Pareek B, Jaswal VS, Chaudhary A, Singh V, et al. A synthesis, characterization and biological function of copper, nickel and iron nano-oxides with various plant extract Vol 2393(1). AIP Conf Proc., 2022 May 19. https:// doi.org/10.1063/5.0075042 DOI: https://doi.org/10.1063/5.0075042