Azoxystrobin Induced Changes in the Gill Histoarchitecture, Brain Acetylcholinesterase Activity and the Behavior of the Fish Pethia conchonius from the River Teesta

Jump To References Section

Authors

  • Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU, District, Darjeeling - 734013, West Bengal ,IN
  • Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU, District, Darjeeling - 734013, West Bengal ,IN
  • Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU, District, Darjeeling - 734013, West Bengal ,IN
  • Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU, District, Darjeeling - 734013, West Bengal ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i3/42152

Keywords:

Acetylcholinesterase, Azoxystrobin, Histology, Pethia conchonius

Abstract

Azoxystrobin is a globally used strobilurin fungicide, which contaminates waterbodies through surface run-off. Its bioaccumulation in aquatic animals via food chains can induce serious pathophysiological disturbances. Therefore, histopathological and neuronal effects of azoxystrobin have been assessed in the fish, Pethia conchonius in the laboratory condition. Azoxystrobin-treated fish showed slow movement, crowding at the bottom, loss of equilibrium, and excess mucus secretion at all concentrations (0.025mg/L, 0.0514 mg/L, and 0.103mg/L) at 48 hours of exposure compared to the control. A significant dose and time-dependent inhibition in acetylcholinesterase activity was observed (p<0.05). The highest acetylcholinesterase inhibition (45.45 ± 1.07) was noted for the highest concentration at 96 hours of exposure than the control groups (88.35 ± 0.71). In contrast to the control, different histopathological changes in gill tissues have been observed like, epithelial lifting, lamellar fusion, epithelial hyperplasia, and the curling of secondary lamellae in the azoxystrobin-exposed groups after 24 hours of treatment. The results of this study indicated that azoxystrobin is neurotoxic as well as damaging to gills.

Downloads

Download data is not yet available.

Published

2024-07-10

How to Cite

Ray, A., Dutta, D., Ghosh, B., & Bahadur, M. (2024). Azoxystrobin Induced Changes in the Gill Histoarchitecture, Brain Acetylcholinesterase Activity and the Behavior of the Fish <i>Pethia conchonius</i> from the River Teesta. Toxicology International, 31(3), 417–428. https://doi.org/10.18311/ti/2024/v31i3/42152
Received 2024-03-21
Accepted 2024-05-24
Published 2024-07-10

 

References

Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 2021; 18(3):1112. https://doi.org/10.3390/ijerph18031112 DOI: https://doi.org/10.3390/ijerph18031112

Avenot HF, Michailides TJ. Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant Disease. 2007; 91(10):1345-50. https://doi.org/10.1094/PDIS-91-10-1345 DOI: https://doi.org/10.1094/PDIS-91-10-1345

Bernardes MF, Pazin M, Pereira LC, Dorta DJ. Impact of pesticides on environmental and human health. Toxicology Studies Cells, Drugs, and the Environment. 2015; 195- 233. https://doi.org/10.5772/59710 DOI: https://doi.org/10.5772/59710

Sarkar S, Gil JD, Keeley J, Jansen K. The use of pesticides in developing countries and their impact on health and the right to food. European Union; 2021.

Seltenrich N. More pieces of the puzzle: New insights into azoxystrobin exposures and neurotoxicity. EHP. 2022; 130(4):044002. https://doi.org/10.1289/EHP11166 DOI: https://doi.org/10.1289/EHP11166

Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, Payraudeau S, Rasmussen JJ, Rohr J, Scharmüller A, Smalling K. Fungicides: An overlooked pesticide class? Environ Sci Technol. 2019; 53(7):3347-65. https://doi. org/10.1021/acs.est.8b04392 DOI: https://doi.org/10.1021/acs.est.8b04392

McDougall P. AgriService: Products Section, 2014 Market. Phillips McDougall-AgriService; 2015.

Li H, Cao F, Zhao F, Yang Y, Teng M, Wang C, Qiu L. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos. Chemosphere. 2018; 207:781-90. https://doi.org/10.1016/j. chemosphere.2018.05.146 DOI: https://doi.org/10.1016/j.chemosphere.2018.05.146

Lu B. Azoxystrobin and pyraclostrobin dominate the market of Strobilurin fungicides. Shangdong Pesticide News. 2018; 4:24-30.

Azoxystrobin Market Size, Industry Changing Aspect and Forecast to 2032 with the Top key players, Global Industry Forecast [Internet], 2024, March, cited 2024, May 11; available from: https://www.maximizemarketresearch. com/market-report/global-azoxystrobin-market/107455/

Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. Environ Pollut. 2021; 275:116671. https://doi.org/10.1016/j.envpol.2021.116671 DOI: https://doi.org/10.1016/j.envpol.2021.116671

Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr‐Dobrzanski B. The strobilurin fungicides. Pest Manag Sci. 2002; 58(7):649-62. https://doi.org/10.1002/ps.520 DOI: https://doi.org/10.1002/ps.520

Wang H, Huang Y, Wang J, Chen X, Wei K, Wang M, Shang S. Activities of azoxystrobin and difenoconazole against Alternaria alternata and their control efficacy. Crop Protection. 2016; 90:54-8. https://doi.org/10.1016/j. cropro.2016.08.022 DOI: https://doi.org/10.1016/j.cropro.2016.08.022

Hu W, Liu CW, Jiménez JA, McCoy ES, Hsiao YC, Lin W, Engel SM, Lu K, Zylka MJ. Detection of azoxystrobin fungicide and metabolite azoxystrobin-acid in pregnant women and children, estimation of daily intake, and evaluation of placental and lactational transfer in mice. EHP. 2022; 130(2):027013. https://doi.org/10.1289/EHP9808 DOI: https://doi.org/10.1289/EHP9808

Wang R, Huang N, Ji J, Chen C. An integrated approach for evaluating the interactive effects between azoxystrobin and ochratoxin A: Pathway-based in vivo analyses. Pestic Biochem Phys. 2023; 195:105556. https://doi.org/10.1016/j.pestbp.2023.105556 DOI: https://doi.org/10.1016/j.pestbp.2023.105556

Tomlin CD. The pesticide manual; 2000. (No. Ed. 12, 1250).

Reilly TJ, Smalling KL, Orlando JL, Kuivila KM. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere. 2012; 89(3):228-34. https://doi. org/10.1016/j.chemosphere.2012.04.023 DOI: https://doi.org/10.1016/j.chemosphere.2012.04.023

Schriever CA, von der Ohe PC, Liess M. Estimating pesticide runoff in small streams. Chemosphere. 2007; 68(11):2161- 71. https://doi.org/10.1016/j.chemosphere.2007.01.086 DOI: https://doi.org/10.1016/j.chemosphere.2007.01.086

Jørgensen LF, Kjær J, Olsen P, Rosenbom AE. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites. Chemosphere. 2012; 88(5):554- 62. https://doi.org/10.1016/j.chemosphere.2012.03.027 DOI: https://doi.org/10.1016/j.chemosphere.2012.03.027

Wang Q, Zhong WY, Huang S. Determination of azoxystrobin residues in surface water by HPLC with solid-phase extraction. Anhui Med Pharm J. 2009; 13:611-2.

Han Y, Liu T, Wang J, Wang J, Zhang C, Zhu L. Genotoxicity and oxidative stress induced by the fungicide azoxystrobin in zebrafish (Danio rerio) livers. Pestic Biochem Phys. 2016; 133:13-9. https://doi.org/10.1016/j.pestbp.2016.03.011 DOI: https://doi.org/10.1016/j.pestbp.2016.03.011

Rossi AS, Fantón N, Michlig MP, Repetti MR, Cazenave J. Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecol Indic. 2020; 113:106186. https://doi.org/10.1016/j.ecolind.2020.106186 DOI: https://doi.org/10.1016/j.ecolind.2020.106186

Corcoran S, Metcalfe CD, Sultana T, Amé MV, Menone ML. Pesticides in surface waters in Argentina monitored using polar organic chemical integrative samplers. Bull Environ Contam Toxicol. 2020; 104:21-6. https://doi.org/10.1007/s00128-019-02758-z DOI: https://doi.org/10.1007/s00128-019-02758-z

Van der Oost R, Beyer J, Vermeulen NP. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. 2003; 13(2):57-149. https://doi.org/10.1016/S1382-6689(02)00126-6 DOI: https://doi.org/10.1016/S1382-6689(02)00126-6

De la Torre FR, Ferrari L, Salibián A. Biomarkers of a native fish species (Cnesterodon decemmaculatus) application to the water toxicity assessment of a peri-urban polluted river of Argentina. Chemosphere. 2005; 59(4):577-83. https://doi.org/10.1016/j.chemosphere.2004.12.039 DOI: https://doi.org/10.1016/j.chemosphere.2004.12.039

Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut. 2003; 121(3):307-20. https://doi.org/10.1016/S0269-7491(02)00270-1 DOI: https://doi.org/10.1016/S0269-7491(02)00270-1

Hussain B, Fatima M, Al-Ghanim KA, Mahboob S. Environmentally induced nephrotoxicity and histopathological alternations in Wallago attu and Cirrhinus mrigla. Saudi J Biol Sci. 2019; 26(4):752-7. https://doi. org/10.1016/j.sjbs.2019.02.003 DOI: https://doi.org/10.1016/j.sjbs.2019.02.003

Van Dyk JC, Marchand MJ, Pieterse GM, Barnhoorn IE, Bornman MS. Histological changes in the gills of Clarias gariepinus (Teleostei: Clariidae) from a polluted South African urban aquatic system. Afr J Aquat Sci. 2009; 34(3):283-91. https://doi.org/10.2989/AJAS.2009.34.3.10.986 DOI: https://doi.org/10.2989/AJAS.2009.34.3.10.986

Hinton DE, Lauren DJ, McCuskey RS, McCuskey PA, Lantz RC. In vivo microscopy of liver microvasculature in rainbow trout (Oncorhynchus mykiss). Mar Environ Res. 1989; 28(1- 4):407-10. https://doi.org/10.1016/0141-1136(89)90270-5 DOI: https://doi.org/10.1016/0141-1136(89)90270-5

Manera M, Dezfuli BS, DePasquale JA, Giari L. Multivariate approach to gill pathology in European sea bass after experimental exposure to cadmium and terbuthylazine. Ecotoxicol Environ Saf. 2016; 129:282-90. https://doi.org/10.1016/j.ecoenv.2016.03.039 DOI: https://doi.org/10.1016/j.ecoenv.2016.03.039

Ramírez-Duarte WF, Rondón-Barragán IS, Eslava-Mocha PR. Acute toxicity and histopathological alterations of Roundup® herbicide on” cachama blanca”(Piaractus brachypomus). Pesq Vet Bras. 2008; 28:547-54. https://doi. org/10.1590/S0100-736X2008001100002 DOI: https://doi.org/10.1590/S0100-736X2008001100002

Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos P, Fontaínhas-Fernandes A. Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesq Vet Bras. 2007; 27:103- 9. https://doi.org/10.1590/S0100-736X2007000300004 DOI: https://doi.org/10.1590/S0100-736X2007000300004

Fontaínhas-Fernandes A, Luzio A, Garcia-Santos S, Carrola J, Monteiro S. Gill histopathological alterations in Nile tilapia, Oreochromis niloticus exposed to treated sewage water. BABT. 2008; 51:1057-63. https://doi.org/10.1590/S1516-89132008000500023 DOI: https://doi.org/10.1590/S1516-89132008000500023

Shah ZU, Parveen S. Oxidative, biochemical and histopathological alterations in fishes from pesticidecontaminated river Ganga, India. Sci Rep. 2022; 12(1):3628. https://doi.org/10.1038/s41598-022-07506-8 DOI: https://doi.org/10.1038/s41598-022-07506-8

de Oliveira Ribeiro CA, Belger L, Pelletier E, Rouleau C. Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environ Res. 2002; 90(3):217-25. https://doi. org/10.1016/S0013-9351(02)00025-7 DOI: https://doi.org/10.1016/S0013-9351(02)00025-7

Maurya PK, Malik DS. Bioaccumulation of heavy metals in tissues of selected fish species from Ganga river, India, and risk assessment for human health. HERA. 2018. https://doi. org/10.1080/10807039.2018.1456897 DOI: https://doi.org/10.1080/10807039.2018.1456897

Jin Y, Zhu Z, Wang Y, Yang E, Feng X, Fu Z. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish. Chemosphere. 2016; 153:455-61. https://doi.org/10.1016/j.chemosphere.2016.03.085 DOI: https://doi.org/10.1016/j.chemosphere.2016.03.085

Pereira VM, Bortolotto JW, Kist LW, de Azevedo MB, Fritsch RS, da Luz Oliveira R, Pereira TC, Bonan CD, Vianna MR, Bogo MR. Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology. 2012; 33(3):469- 75. https://doi.org/10.1016/j.neuro.2012.03.005 DOI: https://doi.org/10.1016/j.neuro.2012.03.005

Schmidel AJ, Assmann KL, Werlang CC, Bertoncello KT, Francescon F, Rambo CL, Beltrame GM, Calegari D, Batista CB, Blaser RE, Júnior WA. Subchronic atrazine exposure changes the defensive behavior profile and disrupts the brain acetylcholinesterase activity of zebrafish. NT and T. 2014; 44:62-9. https://doi.org/10.1016/j.ntt.2014.05.006 DOI: https://doi.org/10.1016/j.ntt.2014.05.006

Senger MR, Rosemberg DB, Rico EP, de Bem Arizi M, Dias RD, Bogo MR, Bonan CD. In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol In Vitro. 2006; 20(6):954-8. https://doi.org/10.1016/j.tiv.2005.12.002 DOI: https://doi.org/10.1016/j.tiv.2005.12.002

Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol. 1997; 53(5):603- 25. https://doi.org/10.1016/S0301-0082(97)00050-6 DOI: https://doi.org/10.1016/S0301-0082(97)00050-6

Geffard M, Vieillemaringe J, Heinrich-Rock AM, Duris P. Anti-acetylcholine antibodies and first immunocytochemical application in the insect brain. Neurosci Lett. 1985; 57(1):1-6. https://doi. org/10.1016/0304-3940(85)90031-X DOI: https://doi.org/10.1016/0304-3940(85)90031-X

Mesulam M, Guillozet A, Shaw P, Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer’s brain. Neurobiol Dis. 2002; 9(1):88-93. https://doi.org/10.1006/nbdi.2001.0462 DOI: https://doi.org/10.1006/nbdi.2001.0462

Murphy PC, Sillito AM. Cholinergic enhancement of direction selectivity in the visual cortex of the cat. Neurosci. 1991; 40(1):13-20. https://doi.org/10.1016/0306-4522(91)90170-S DOI: https://doi.org/10.1016/0306-4522(91)90170-S

Sam C, Bordoni B. Physiol Acetylcholine; 2020. https://www. ncbi.nlm.nih.gov/books/NBK557825/#__NBK557825_ai__

Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013; 11(3):315-35. https://doi.org/10.2174/1570159X11311030006 DOI: https://doi.org/10.2174/1570159X11311030006

Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. Biomed Res Int. 2013; 2013. 1-8 https://doi.org/10.1155/2013/321213 DOI: https://doi.org/10.1155/2013/321213

Kumar R, Kumari R, Mishra BK. Behavioural and morphological changes induced in the freshwater fish, Clarias batrachus exposed to chlorpyrifos 50%+ cypermethrin 5% EC.

Dutta D, Ray A, Bhattacharya E, Ghosh B, Bahadur M. Neurotoxic Effects of Imidacloprid on Pethia conchonius (Rosy Barb), a Common Freshwater Fish of India. Toxicol Int. 2024; 31(1):43-54. https://doi.org/10.18311/ti/2024/v31i1/35473 DOI: https://doi.org/10.18311/ti/2024/v31i1/35473

Singh S, Bhutia D, Sarkar S, Rai BK, Pal J, Bhattacharjee S, Bahadur M. Analyses of pesticide residues in water, sediment and fish tissue from river Deomoni flowing through the tea gardens of Terai Region of West Bengal, India. Int J Fish Aquat. 2015; 3(2):17-23.

Das A. Comparative study of pollution status of two main rivers: Karola and Tista of Jalpaiguri, West Bengal. India J Chem Pharm Res. 2017; 9(7):76-81.

Gill TS, Tewari H, Pande J. Use of the fish enzyme system in monitoring water quality: Effects of mercury on tissue enzymes. CBPC. 1990; 97(2):287-92. https://doi.org/10.1016/0742-8413(90)90143-W DOI: https://doi.org/10.1016/0742-8413(90)90143-W

Varadi L, Hidas A, Varkonyi E, Horvath L. Interesting phenomena in the hybridization of carp (Cyprinus carpio) and rosy barb (Barbus conchonius). Aquac. 1995; 129(1- 4):211-4. https://doi.org/10.1016/0044-8486(94)00251-I DOI: https://doi.org/10.1016/0044-8486(94)00251-I

Kirankumar S, Anathy V, Pandian TJ. Hormonal induction of supermale golden rosy barb and isolation of Y-chromosome specific markers. Gen Comp Endocrinol. 2003; 134(1):62-71. https://doi.org/10.1016/S0016-6480(03)00218-1 DOI: https://doi.org/10.1016/S0016-6480(03)00218-1

Bhattacharya H, Lun L. Gomez GDR Biochemical effects to the toxicity of CCl4 on rosy barbs (Puntius conchonius). Our Nature. 2005; 3(1):20-25. https://doi.org/10.3126/ on.v3i1.330 DOI: https://doi.org/10.3126/on.v3i1.330

Organisation for Economic Co-operation and Development, OECD Test No. 203: fish, acute toxicity test. France: OECD Publishing; 2019

Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2):88-95. https://doi.org/10.1016/0006-2952(61)90145-9 DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Bernet D, Schmidt H, Meier W, Burkhardt‐Holm P, Wahli T. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J Fish Dis. 1999; 22(1):25-34. https://doi. org/10.1046/j.1365-2761.1999.00134.x DOI: https://doi.org/10.1046/j.1365-2761.1999.00134.x

Rodrigues ET, Lopes I, Pardal MÂ. Occurrence, fate, and effects of azoxystrobin in aquatic ecosystems: a review. Environ Int. 2013; 53:18-28. https://doi.org/10.1016/j. envint.2012.12.005 DOI: https://doi.org/10.1016/j.envint.2012.12.005

Ali D, Ibrahim KE, Hussain SA, Abdel-Daim MM. Role of ROS generation in acute genotoxicity of azoxystrobin fungicide on freshwater snail Lymnaea luteola L. ESPR. 2021; 28:5566-74. https://doi.org/10.1007/s11356-020-10895-w DOI: https://doi.org/10.1007/s11356-020-10895-w

Mu XY, Huang Y, Luo JB, Shen G, Li X, Lei Y, Li Y, Wang C. Evaluation of the acute and developmental toxicity of azoxystrobin on zebrafish via multiple life stage assays. Acta Sci Circum. 2017; 37(3):1122-32.

Jiang J, Shi Y, Yu R, Chen L, Zhao X. Biological response of zebrafish after short-term exposure to azoxystrobin. Chemosphere. 2018; 202:56-64. https://doi.org/10.1016/j. chemosphere.2018.03.055 DOI: https://doi.org/10.1016/j.chemosphere.2018.03.055

Bony S, Gaillard I, Devaux A. Genotoxicity assessment of two vineyard pesticides in zebrafish. J Environ Anal Chem. 2010; 90(3-6):421-8. https://doi.org/10.1080/03067310903033659 DOI: https://doi.org/10.1080/03067310903033659

Crupkin AC, Fulvi AB, Iturburu FG, Medici S, Mendieta J, Panzeri AM, Menone ML. Evaluation of hematological parameters, oxidative stress, and DNA damage in the cichlid Australoheros facetus exposed to the fungicide azoxystrobin. Ecotoxicol Environ Saf. 2021; 207:111286. https://doi.org/10.1016/j.ecoenv.2020.111286 DOI: https://doi.org/10.1016/j.ecoenv.2020.111286

Dutta HM, Munshi JS, Roy PK, Singh NK, Adhikari S, Killius J. Ultrastructural changes in the respiratory lamellae of the catfish, Heteropneustes fossilis after sublethal exposure to malathion. Environ Pollut. 1996; 92(3):329-41. https:// doi.org/10.1016/0269-7491(95)00101-8 DOI: https://doi.org/10.1016/0269-7491(95)00101-8

Altinok I, Capkin E. Histopathology of rainbow trout exposed to sublethal concentrations of methiocarb or endosulfan. Toxicol Pathol. 2007; 35(3):405-10. https://doi. org/10.1080/01926230701230353 DOI: https://doi.org/10.1080/01926230701230353

Mallatt J. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci. 1985; 42(4):630-48. https://doi.org/10.1139/f85-083 DOI: https://doi.org/10.1139/f85-083

Qureshi IZ, Bibi A, Shahid S, Ghazanfar M. Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat Toxicol. 2016; 179:103-14. https://doi.org/10.1016/j.aquatox.2016.08.012 DOI: https://doi.org/10.1016/j.aquatox.2016.08.012

Mahboob S, Al-Ghanim KA, Al-Balawi HF, Al-Misned F, Ahmed Z. Toxicological effects of heavy metals on histological alterations in various organs in Nile tilapia (Oreochromis niloticus) from a freshwater reservoir. J King Saud Univ Sci. 2020; 32(1):970-3. https://doi.org/10.1016/j. jksus.2019.07.004 DOI: https://doi.org/10.1016/j.jksus.2019.07.004

Kazmi SA, Iqbal R, Al-Doaiss AA, Ali M, Hussain R, Latif F, Raza GA. Azoxystrobin-induced oxidative stress in gills, hematological biomarkers and histopathological ailments in freshwater fish. Pak Vet J. 2023; 43(2). https://doi. org/10.29261/pakvetj/2023.025 DOI: https://doi.org/10.29261/pakvetj/2023.025

Nataraj B, Hemalatha D, Malafaia G, Maharajan K, Ramesh M. “Fishcide” effect of the fungicide difenoconazole in freshwater fish (Labeo rohita): A multi-endpoint approach. Sci Total Environ. 2023; 857:159425. https://doi. org/10.1016/j.scitotenv.2022.159425 DOI: https://doi.org/10.1016/j.scitotenv.2022.159425

Stoyanova S, Yancheva VS, Velcheva I, Uchikova E, Georgieva E. Histological alterations in common carp (Cyprinus carpio Linnaeus, 1758) gills as potential biomarkers for fungicide contamination. BABT. 2015; 58:757-64. https://doi.org/10.1590/S1516-89132015050151 DOI: https://doi.org/10.1590/S1516-89132015050151

Boran H, Capkin E, Altinok I, Terzi E. Assessment of acute toxicity and histopathology of the fungicide captan in rainbow trout. Exp Toxicol Pathol. 2012; 64(3):175-9. https://doi.org/10.1016/j.etp.2010.08.003 DOI: https://doi.org/10.1016/j.etp.2010.08.003

Raibeemol KP, Chitra KC. Histopathological alteration in the gill of the freshwater fish Pseudetroplus maculatus (Bloch, 1795) under chlorpyrifos toxicity. Int J Bio Biomed Res. 2016; 3:141-6. https://doi.org/10.22192/ ijarbs.2016.03.12.018 DOI: https://doi.org/10.22192/ijarbs.2016.03.12.018

Chamarthi RR, Bangeppagari M, Gooty JM, Mandala S, Tirado JO, Marigoudar SR. Histopathological alterations in the gill, liver, and brain of Cyprinus carpio on exposure to quinalphos. Am J Life Sci. 2014; 2(4):211-6. https://doi. org/10.11648/j.ajls.20140204.14 DOI: https://doi.org/10.11648/j.ajls.20140204.14

Velmurugan B, Selvanayagam M, Cengiz EI, Unlu E. Histopathological changes in the gill and liver tissues of freshwater fish, Cirrhinus mrigala exposed to dichlorvos. BABT. 2009; 52:1291-6. https://doi.org/10.1590/S1516- 89132009000500029 DOI: https://doi.org/10.1590/S1516-89132009000500029

Halappa R, David M. Behavioral responses of the freshwater fish, Cyprinus carpio (Linnaeus) following sublethal exposure to chlorpyrifos. TrJFAS. 2009; 9(2).

Kavitha P, Rao JV. Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ Toxicol Pharmacol. 2008; 26(2):192-8. https://doi.org/10.1016/j.etap.2008.03.010 DOI: https://doi.org/10.1016/j.etap.2008.03.010

Padmanabha H, Correa F, Rubio C, Baeza A, Osorio S, Mendez J, Jones JH, Diuk-Wasser MA. Human social behavior and demography drive patterns of fine-scale dengue transmission in endemic areas of colombia. PloS one. 2015; 10(12):e0144451. https://doi.org/10.1371/ journal.pone.0144451 DOI: https://doi.org/10.1371/journal.pone.0144451

Ullah R, Zuberi A, Ullah S, Ullah I, Dawar FU. Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. J Toxicol Sci. 2014; 39(6):829-36. https://doi.org/10.2131/jts.39.829 DOI: https://doi.org/10.2131/jts.39.829

Patil VK, David M. Behaviour and respiratory dysfunction as an index of malathion toxicity in the freshwater fish, Labeo rohita (Hamilton). TrJFAS. 2008; 8(2). https://doi.org/10.1515/JBCPP.2008.19.2.167 DOI: https://doi.org/10.1515/JBCPP.2008.19.2.167

de Oliveira MR, Profeta IV, Saraiva Raimondi Lopes JV, Costa RM, Matos e Chaib VR, Domingues AG, Beirão MV, Santos Rubio KT, Martucci ME, Eskinazi-Sant’Anna EM, de Azevedo CS. Effects of the fungicide carbendazim on the behavior of the zebrafish Danio rerio (Cypriniformes, Cyprinidae). Acta Ethol. 2024; 1-1. https://doi.org/10.1007/s10211-024-00438-8 DOI: https://doi.org/10.1007/s10211-024-00438-8

Altenhofen S, Nabinger DD, Wiprich MT, Pereira TC, Bogo MR, Bonan CD. Tebuconazole alters morphological, behavioral, and neurochemical parameters in larvae and adult zebrafish (Danio rerio). Chemosphere. 2017; 180:483-90. https://doi.org/10.1016/j.chemosphere.2017.04.029 DOI: https://doi.org/10.1016/j.chemosphere.2017.04.029

Srivastava P, Singh A. Evidence of micronuclei in fish blood as a biomarker of genotoxicity due to surface runoff agricultural fungicide (Propiconazole). JTEHS. 2015; 7(1):4-8. https://doi.org/10.5897/JTEHS2015.0325 DOI: https://doi.org/10.5897/JTEHS2015.0325

Fernandez HL, Hodges-Savola CA. Trophic regulation of acetylcholinesterase isoenzymes in adult mammalian skeletal muscles. Neurochem Res. 1992; 17:115-24. https:// doi.org/10.1007/BF00966872 DOI: https://doi.org/10.1007/BF00966872

Most read articles by the same author(s)