Insecticide Exposure May Pose a Threat to the Future Life Expectancy of Non-Targets: Inferred from Fly Research

Jump To References Section

Authors

  • Department of Biotechnology, Jaypee Institute of Information Technology, Noida – 201309, Uttar Pradesh ,IN
  • Department of Biotechnology, Jaypee Institute of Information Technology, Noida – 201309, Uttar Pradesh ,IN

Keywords:

Differential Gene Expression, Drosophila, Lifespan, Non-Targets, Organophosphates

Abstract

The life span of organisms becomes very flexible and vulnerable due to environmental and climatic changes, which have both natural and man-made factors. One such example is the inappropriate use of insecticides and pesticides in the agriculture and health sectors, which cause environmental pollution, despite their agricultural and health benefits. Two of the most widely used organophosphate insecticides, chlorpyrifos (CP) and ethion (ET), are known to have neurotoxic properties and they target to inhibit the neurotransmitter function of acetylcholinesterase (AChE) in insects. Previous studies have shown that exposure to these insecticides brings detrimental health effects to non-targets including humans. The present work aims to estimate the effects of CP and ET on lifespan in two sibling species of Drosophila, Drosophila melanogaster and Drosophila simulans, after being exposed for 24 and 48 hrs to their sublethal concentrations (determined from LC₅₀ and LC₉₀). To understand the molecular mechanism behind this, Differential Expression Gene (DEG) analysis of ET-exposed Drosophila flies was carried out through whole transcriptome sequencing, which shows 85 upregulated and 95 downregulated ageing-associated genes, involved in the regulation of cell cycle, growth and development. The flies were then continuously cultured in insecticide-treated and untreated media (Control) for ten generations, after which the lifespan was calculated (Control vs F₁ vs. F₁₀). In comparison, the results revealed a remarkable reduction of lifespan in F₁ treated, which increased in F₁₀ treated flies, but still, it did not reach up to the average lifespan of the control. Thus, the long-term effect of insecticide exposure on the lifespan of non-targets cannot be overlooked and needs to be further addressed.

Downloads

Download data is not yet available.

Published

2024-09-13

How to Cite

Sharma, S., & Mohanty, S. (2024). Insecticide Exposure May Pose a Threat to the Future Life Expectancy of Non-Targets: Inferred from Fly Research. Toxicology International. Retrieved from https://informaticsjournals.co.in/index.php/toxi/article/view/43730

Issue

Section

Articles
Received 2024-04-23
Accepted 2024-08-22
Published 2024-09-13

 

References

Modig K, Rau R, Ahlbom A. Life expectancy: What does it measure? BMJ open. 2020; 10(7). http://dx.doi. org/10.1136/bmjopen-2019-035932 PMid: 34444306 PMCid: PMC8391297.

Chen Z, Ma Y, Hua J, Wang Y, Guo H. Impacts from economic development and environmental factors on life expectancy: A comparative study based on data from both developed and developing countries from 2004 to 2016. Int J of Environ Res Public Health. 2021; 18(16):8559. https://doi.org/10.3390/ijerph18168559 PMid: 34444306 PMCid: PMC8391297.

Rahman MM, Rana R, Khanam R. Determinants of life expectancy in most polluted countries: Exploring the effect of environmental degradation. PloS one. 2022; 17(1):e0262802. https://doi.org/10.1371/journal. pone.0262802 PMid: 35061838 PMCid: PMC8782287.

Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and longevity of lifespan. Int J Mol Sci. 2022; 23(3):1499. https://doi.org/10.3390/ ijms23031499 PMid: 35163422 PMCid: PMC8836117.

Tefera YM, Gaskin S, Thredgold L, Pisaniello D. The role of formulation co‐ingredients in skin and glove barrier protection against organophosphate insecticides. Pest Manag Sci. 2022; 78(1):177- 83. https://doi.org/10.1002/ ps.6621 PMid: 34464493.

Cabrera M, Capparelli MV, Nacato-Ch C, Moulatlet GM, Lopez-Heras I, Gonzalez MD, Alvear-S D, Rico A. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere. 2023; 139286. https://doi. org/10.1016/j.chemosphere.2023.139286 PMid: 37379974.

Ore OT, Adeola AO, Bayode AA, Adedipe DT, Nomngongo PN. Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. J Environ Chem Ecotoxicol. 2023; 5: 9-23. https://doi.org/10.1016/j.enceco.2022.10.004

Neylon J, Fuller JN, van der Poel C, Church JE, Dworkin S. Organophosphate insecticide toxicity in neural development, cognition, behaviour and degeneration: Insights from Zebrafish. J Dev Biol. 2022; 10(4):49. https://doi.org/10.3390/jdb10040049 PMid: 36412643 PMCid: PMC9680476.

Kaur K, Kaur R. Occupational pesticide exposure, impaired DNA repair, and diseases. Indian J Occup Environ Med. 2018; 22(2):74. https://doi.org/10.4103/ijoem. IJOEM_45_18 PMid: 30319227 PMCid: PMC6176703.

Dar MA, Hamid B, Kaushik G. Temporal trends in the use and concentration of organophosphorus pesticides in Indian riverine water, toxicity, and their risk assessment. Reg Stud Mar Sci. 2023; 102814. https://doi.org/10.1016/j. rsma.2023.102814

Dawson AH, Eddleston M, Senarathna L, Mohamed F, Gawarammana I, Bowe SJ, et al. Acute human lethal toxicity of agricultural pesticides: A prospective cohort study. PLoS Med. 2010; 7(10):e1000357. https://doi.org/10.1371/journal.pmed.1000357 PMid: 21048990 PMCid: PMC2964340.

Mohanty S, Khanna R. Genome-wide comparative analysis of four Indian Drosophila species. Mol Genet Genom. 2017; 292:1197-208. https://doi.org/10.1007/s00438-017-1339-8 PMid: 28660309.

Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a model organism to study basic mechanisms of longevity. Int J Mol Sci. 2022; 23(19):11244. https://doi.org/10.3390/ijms231911244 PMid: 36232546 PMCid: PMC9569508.

Clancy D, Chtarbanova S, Broughton S. Model organisms in aging research: Drosophila melanogaster. Front Aging. 2023; 3:1118299. https://doi.org/10.3389/fragi.2022.1118299 PMid: 36704580 PMCid: PMC9871377.

Singh BK. Organophosphorus-degrading bacteria: Ecology and industrial applications. Nat Rev Microbiol. 2009; 7(2):156-64. https://doi.org/10.1038/nrmicro2050 PMid: 19098922

Kushwaha M, Verma S, Chatterjee S. Profenofos, an acetylcholinesterase‐inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation. J Environ Qual. 2016;45(5):1478-89. https://doi.org/10.2134/jeq2016.03.0100 PMid: 27695768.

Nazir A, Mukhopadhyay I, Saxena DK, Chowdhuri DK. Chlorpyrifos-induced hsp70 expression and effect on reproductive performance in transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Arch Environ Contam Toxicol. 2001; 41:443-9. https://doi.org/10.1007/ s002440010270 PMid: 11598781.

Gregorc A, Alburaki M, Rinderer N, Sampson B, Knight PR, Karim S, et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci Rep. 2018; 8(1):15003. https://doi.org/10.1038/s41598-018-33348-4 PMid: 30301926 PMCid: PMC6177410.

Boyda J, Hawkey AB, Holloway ZR, Trevisan R, Di Giulio RT, Levin ED. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol. 2021; 87:107011. https://doi.org/10.1016/j.ntt.2021.107011 PMid: 34224825 PMCid: PMC8440393.

Piper MD, Partridge L. Drosophila as a model for ageing. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(9):2707-17. https://doi.org/10.1016/j.bbadis.2017.09.016 PMid: 28964875

Li X, Liu J, Wang X. Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster. J Hazard Mater. 2020; 384:121419. https://doi.org/10.1016/j. jhazmat.2019.121419 PMid: 31630861.

Guedes RN, Cutler GC. Insecticide‐induced hormesis and arthropod pest management. Pest Manag Sci. 2014; 70(5):690-7. https://doi.org/10.1002/ps.3669 PMID: 24155227.

Martins R, Lithgow GJ, Link W. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging cell. 2016; 15(2):196-207. https://doi.org/10.1111/acel.12427 PMID: 26643314.

Koushika SP, Lisbin MJ, White K. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Curr Biol. 1996; 6(12):1634-41. https://doi.org/10.1016/S0960- 9822(02)70787-2 PMID: 8994828.

Hamaratoglu F, Affolter M, Pyrowolakis G. Dpp/BMP signaling in flies: From molecules to biology. Semin Cell Dev Biol. 2014; 32:128-136. https://doi.org/10.1016/j. semcdb.2014.04.036 PMID: 24813173.

Choy SW, Cheng SH. Hedgehog signaling. Vitamins Hormones. 2012; 88:1-23. https://doi.org/10.1016/B978-0- 12-394622-5.00001-8.

Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophys Acta. 2015; 1849(5):506-16. https://doi. org/10.1016/j.bbagrm.2014.03.013 PMID: 24704206.

Gan T, Fan L, Zhao L, Misra M, Liu M, Zhang M, Su Y. JNK signaling in Drosophila aging and longevity. Int J Mol Sci. 2021; 22(17):9649. https://doi.org/10.3390/ijms22179649 PMID: 34502551.

Sotillos S, Espinosa-Vazquez JM, Foglia F, Hu N, Hombria JC. An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development. Dev Biol. 2010; 340(2):571-82. https://doi. org/10.1016/j.ydbio.2010.02.015 PMID: 2017120.

Enns LC, Ladiges W. Protein kinase A signaling as an antiaging target. Ageing Res Rev. 2010; 9(3):269-72. https://doi. org/10.1016/j.arr.2010.02.004 PMID: 20188216.

Heinz A, Nabariya DK, Krauss S. Huntingtin and its role in mechanisms of RNA-mediated toxicity. Toxins. 2021 Jul 14;13(7):487. https://doi.org/10.3390/toxins13070487 PMID: 34357961.

Pandey M, Awasthi S. Role of MMP-1, MMP-8 and MMP-9 gene polymorphisms in preterm birth. J Genet. 2020; 99(1):2. https://doi.org/10.1007/s12041-019-1161-7 PMID: 32089521.

Huang G, Li H, Zhang H. Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases. Int J Mol Sci. 2020; 21(22):8879. https://doi.org/10.3390/ijms21228879 PMID: 33238645.

Mozhui K, Snively BM, Rapp SR, Wallace RB, Williams RW, Johnson KC. Genetic analysis of mitochondrial ribosomal proteins and cognitive aging in postmenopausal women. Front Genet. 2017; 8:127. https://doi.org/10.3389/fgene.2017.00127 PMID: 28983317.

Li X, Liu J, Wang X. Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster. J Hazard Mater. 2020; 384:121419.

Desouky MM, Abdel-Gawad H, Hegazi B. Distribution, fate and histopathological effects of ethion insecticide on selected organs of the crayfish, Procambarus clarkii. Food Chem Toxicol. 2013; 52:42-52. https://doi.org/10.1016/j.fct.2012.10.029 PMid: 23127602.

Delkash-Roudsari S, Chicas-Mosier AM, Goldansaz SH, Talebi-Jahromi K, Ashouri A, Abramson CI. Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicol Environ Saf. 2020; 204:111108. https://doi.org/10.1016/j.ecoenv.2020.111108 PMid: 32798750.

Kim RO, Kim BM, Jeong CB, Lee JS, Rhee JS. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus. Environ Toxicol Chem. 2016; 35(6):1449-57. https://doi.org/10.1002/etc.3288 PMid: 26496856.

Selvi M, Sarikaya R, Erkoc F, Kocak O. Investigation of acute toxicity of chlorpyrifos-methyl on guppy Poecilia reticulata. Chemosphere. 2005; 60(1):93-6. https://doi.org/10.1016/j. chemosphere.2004.11.093 PMid: 15910907.

Gomes KK, Macedo GE, Rodrigues NR, Ziech CC, Martins IK, Rodrigues JF, et al. Croton campestris A. St.-Hill methanolic fraction in a chlorpyrifos-induced toxicity model in Drosophila melanogaster: Protective role of gallic acid. Oxid Med Cell Longev. 2020; 2020. https://doi.org/10.1155/2020/3960170 PMid: 32273942 PMCid: PMC7121785.

Eidels RR, Sparks DW, Whitaker JO, Sprague CA. Sub-lethal effects of chlorpyrifos on big brown bats (Eptesicus fuscus). Arch Environ Contam Toxicol. 2016; 71:322-35. https://doi. org/10.1007/s00244-016-0307-3 PMid: 27491870.

Mullins RJ, Xu S, Pereira EF, Mamczarz J, Albuquerque EX, Gullapalli RP. Delayed hippocampal effects from a single exposure of prepubertal guinea pigs to sub-lethal dose of chlorpyrifos: A magnetic resonance imaging and spectroscopy study. Neurotoxicol. 2013; 36:42-8. https:// doi.org/10.1016/j.neuro.2013.02.002 PMid: 23411083 PMCid: PMC3669662.

Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011; 63(2):411-36. https:// doi.org/10.1124/pr.110.003293 PMID: 21415126.