Exploring eco-sensitive strategies for effective powdery mildew management in grapevines

Jump To References Section

Authors

  • Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN
  • Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN
  • Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Eachangkottai, Thanjavur – 614902, Tamil Nadu ,IN
  • Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN
  • Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN
  • Grape Research Station, Anaimalayanpatty, Tamil Nadu Agricultural University, Theni – 625526, Tamil Nadu ,IN
  • Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN
  • Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN
  • Grape Research Station, Anaimalayanpatty, Tamil Nadu Agricultural University, Theni – 625526, Tamil Nadu ,IN
  • Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai – 625104, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jbc/2023/34206

Keywords:

Ampelomyces quisqualis, compatibility, GC-MS, hyperparasitism, powdery mildew, Trichoderma asperellum

Abstract

Grapevine powdery mildew is one of the most important plant diseases widely affecting crops in many countries. The main aim of the present study was to use Ampelomyces quisqualis isolates to suppress the powdery mildew of grapes under field conditions. The findings revealed a strong correlation between the mycoparasite, Ampelomyces quisqualis and the grape powdery mildew pathogens, suggesting its potential for effective control. The results revealed that a single spray of A. quisqualis @ 2.0 per cent (MDU1) succeeded by two sprays of Trichoderma asperellum @ 2.0 per cent (Tasp,7) were found to be effective against Erysiphe necator. In addition, liquid formulation of A. quisqualis isolate MDU1 (2% w/v) as a foliar spray at 2% containing 2 × 106 spores ml-1 the during initial occurrence of the disease up to three sprayings at 15 days interval was found to be best. Thus, a liquid formulation of A. quisqualis isolate MDU1 proved effective in managing grapes powdery mildew disease under field conditions. The rDNA ITS region of A. quisqualis isolates was analyzed at the molecular level, and the resulting sequences were subjected to GC-MS analysis. The secondary metabolite identification using GC-MS revealed the presence of antimicrobial compounds, including squalene with the highest peak of 4.643 percent, octadecanoic acid with 3.862 percent, tetradecanoic acid with 3.600 percent, and 9,12-octadecadienoic acid (Z,Z) with 1.451 percent. These bioactive compounds revealed by GC-MS analysis in crude extracts of A. quisqualis had a stronger antifungal activity against E. necator.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-23

How to Cite

JENA, R. K., RAJA, I. Y., RAMAMOORTHY, V., S. LAKSHMI NARAYANAN, RENUKA, R., A. SUBBIAH, K. ERAIVAN ARUTKANI AIYANATHAN, K. ERAIVAN ARUTKANI AIYANATHAN, V. KARTHIK PANDI, & R. SIVADHARSHANAPRIYA. (2023). Exploring eco-sensitive strategies for effective powdery mildew management in grapevines. Journal of Biological Control, 37(1), 32–45. https://doi.org/10.18311/jbc/2023/34206

Issue

Section

Research Articles
Received 2023-06-24
Accepted 2023-07-31
Published 2023-08-23

 

References

Angeli, D., Pellegrini, E., and Pertot, I. 2009. Occurrence of Erysiphe necator chasmothecia and their natural parasitism by Ampelomyces quisqualis. Phytopathol, 99: 704-10. https://doi.org/10.1094/PHYTO-99-6-0704 DOI: https://doi.org/10.1094/PHYTO-99-6-0704

Awa, E. P., Ibrahim, S., and Ameh, D. A. 2012. GC/MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from the stem bark of Annona senegalensis Pers. Int J Pharm Sci Res, 3: 4213.

Azmat, M. A., Khan, A. A., Saeed, A., Ashraf, M., and Niaz, S. 2012. Pathogenicity and characterization of geographically distributed isolates of Erysiphe polygoni. Int J Veg Sci, 18: 211-222. https://doi.org/10.1080/1931 5260.2011.608116 DOI: https://doi.org/10.1080/19315260.2011.608116

Banyal, D. K., and Tyagi, P, D. 1998. Slow mildewing resistance in cultivar DPP-68 of garden pea in Himachal Pradesh, India. Int J Pest Manage, 43(1): 93-196.

Braun, U. 1987. A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia, 89.

Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., and Darriet, P. 2004. Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathol, 53: 434-445. https://doi.org/10.1111/j.0032- 0862.2004.01016.x DOI: https://doi.org/10.1111/j.0032-0862.2004.01016.x

Chatterjee, S., Karmakar, A., Azmi, S. A., and Barik, A. 2018. Antibacterial activity of long-chain primary alcohols from Solena amplexicaulis leaves. Proc. Zool. Soc., 71: 313-319. https://doi.org/10.1007/s12595-017-0208-0 DOI: https://doi.org/10.1007/s12595-017-0208-0

Czubacka, E., Czerczak, S., and Kupczewska-Dobecka, M. 2021. The overview of current evidence on the reproductive toxicity of dibutyl phthalate. Int J Occup Environ Health, 34: 315-316. https://doi.org/10.13075/ ijomeh.1896.01658 DOI: https://doi.org/10.13075/ijomeh.1896.01658

Dahivelkar, G. E. P., Gawande, P. V., and Mate, G. D. 2017. Management of powdery mildew of okra caused by Erysiphe cichoracearum. Int J Curr Microbiol App Sci, 6(8): 3189-3198. https://doi.org/10.20546/ ijcmas.2017.608.380 DOI: https://doi.org/10.20546/ijcmas.2017.608.380

Dai, X., Zhang, X., Chen, W., Chen, Y., Zhang, Q., Mo, S., and Lu, J. 2021. Dihydroartemisinin: a potential natural anticancer drug. Int J Biol Sci, 17: 603. https://doi. org/10.7150/ijbs.50364 DOI: https://doi.org/10.7150/ijbs.50364

Elbaz, H. A., Stueckle, T. A., Tse, W., Rojanasakul, Y., and Dinu, C. Z. 2012. Digitoxin and its analogs as novel cancer therapeutics. Exp Hematol Oncol, 1: 1-10. https://doi.org/10.1186/2162-3619-1-4 DOI: https://doi.org/10.1186/2162-3619-1-4

El-Benawy, N. M., Abdel-Fattah, G. M., Ghoneem, K. M., and Shabana, Y. M. 2020. Antimicrobial activities of Trichoderma atroviride against common bean seedborne Macrophomina phaseolina and Rhizoctonia solani. Egypt J Basic Appl Sci, 7: 267-280. https://doi. org/10.1080/2314808X.2020.1809849 DOI: https://doi.org/10.1080/2314808X.2020.1809849

Fernandes, G. W., Arantes-Garcia, L., Barbosa, M., Barbosa, N. P., Batista, E. K., Beiroz, W., Resende, F. M., Abrahao, A., Almada, E. D., Alves, E., and Alves, N. J. 2020. Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspect Ecol Conserv, 18(4): 213-22. https://doi.org/10.1016/j. pecon.2020.10.004 DOI: https://doi.org/10.1016/j.pecon.2020.10.004

Gadoury, D. M., Cadle-Davidson, L., Wilcox, W. F., Dry, I. B., Seem, R. C., and Milgroom, M. G. 2012. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol, 13: 1-16. https://doi.org/10.1111/j.1364- 3703.2011.00728.x DOI: https://doi.org/10.1111/j.1364-3703.2011.00728.x

Goh, T. K. 1999. Single spore isolation using a hand-made glass needle. Fungal Diver, 2: 47-63.

Hirata, T., and Takamatsu, S. 1996. Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience, 37(3): 283-288. https://doi. org/10.1007/BF02461299 DOI: https://doi.org/10.1007/BF02461299

Jayalakshmi, R., Oviya, R., Premalatha, K., Mehetre, S. T., Paramasivam, M., Kannan, R., Theradimani, M., Pallavi, M. S., Mukherjee, P. K., and Ramamoorthy, V. 2021. Production, stability and degradation of Trichoderma gliotoxin in growth medium, irrigation water and agricultural soil. Sci Rep, 11: 1–14. https:// doi.org/10.1038/s41598-021-95907-6 DOI: https://doi.org/10.1038/s41598-021-95907-6

Jayasuriya, K. E., Wijesundera, R. L. C., and Deraniyagala, S. A. 2003. Isolation of anti‐fungal phenolic compounds from petioles of two Hevea brasiliensis (rubber) genotypes and their effect on Phytophthora meadii. Ann Appl Biol, 142(1): 63-69. https://doi. org/10.1111/j.1744-7348.2003.tb00230.x DOI: https://doi.org/10.1111/j.1744-7348.2003.tb00230.x

Jenkins, B., West, J. A., and Koulman, A. 2015. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules, 20(2): 2425- 2444. https://doi.org/10.3390/molecules20022425 DOI: https://doi.org/10.3390/molecules20022425

Kapoor, A. S., and Kumar, J. 1996. Evaluation of slow mildewing resistance in pea. Himachal J Agrl Res, 22: 31-35.

Keerthana, S., Sendhilvel, V., Raguchander, T., Varanavasiappan, S., and Swarnapriya, R. 2022. Diversity of powdery mildew mycoparasite Ampelomyces quisqualis under natural ecosystem and its molecular characterization. Int J Plant Soil Sci, 34(9): 48–59. https://doi.org/10.9734/ijpss/2022/v34i930913 DOI: https://doi.org/10.9734/ijpss/2022/v34i930913

Kiss, L., Russell, J. C., Szentivanyi, O., Xu, X., and Jeffries, P. 2014. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Technol, 14(7): 635-651. https:// doi.org/10.1080/09583150410001683600 DOI: https://doi.org/10.1080/09583150410001683600

Kohl, J., Kolnaar, R., and Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci, 845. PMid: 31379891 PMCid: PMC6658832. https://doi.org/10.3389/fpls.2019.00845 DOI: https://doi.org/10.3389/fpls.2019.00845

Li, L., Wang, Q., Yang, Y., Wu, G., Xin, X., and Aisa, H. A. 2012. Chemical components and antidiabetic activity of essential oils obtained by hydrodistillation and three solvent extraction methods from Carthamus tinctorius L. Acta Chromatographica, 24(4): 653-665. https://doi. org/10.1556/AChrom.24.2012.4.11 DOI: https://doi.org/10.1556/AChrom.24.2012.4.11

Ma, M., Hummel, H. E., and Burkholder, W. E. 1980. Estimation of single furniture carpet beetle (Anthrenus flavipes LeConte) sex pheromone release by doseresponse curve and chromatographic analysis of pentafluorobenzyl derivative of (Z)-3-decenoic acid. J Chem Ecol, 6: 597-607. https://doi.org/10.1007/ BF00987672 DOI: https://doi.org/10.1007/BF00987672

Moller, E. M., Bahnweg, G., Sandermann, H., and Geiger, H. H. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res, 22(20): 6115-6116. https://doi.org/10.1093/ nar/20.22.6115 DOI: https://doi.org/10.1093/nar/20.22.6115

Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., and Hyakumachi, M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9: 1-10. https://doi.org/10.1371/ journal.pone.0086882 DOI: https://doi.org/10.1371/journal.pone.0086882

Nongmaithem, N., Basudha, C., and Sharma, S. K. 2017. Incidence of rust, powdery mildew and wilt in pea and broad bean plant of Manipur, India. Int J Curr Microbiol Appl Sci, 6: 2611-2616. https://doi.org/10.20546/ ijcmas.2017.608.310 DOI: https://doi.org/10.20546/ijcmas.2017.608.310

Ramamoorthy, V., Govindaraj, L., Dhanasekaran, M., Vetrivel, S., Kumar, K., and Ebenezar, E. 2015. Combination of driselase and lysing enzyme in one molar potassium chloride is effective for the production of protoplasts from germinated conidia of Fusarium verticillioides. J Microbiol Methods, 111: 127-134. https://doi.org/10.1016/j.mimet.2015.02.010 DOI: https://doi.org/10.1016/j.mimet.2015.02.010

Saari, E. E., and Prescott, J. M. 1975. A scale for appraising foliar intensity of wheat diseases. Plant Dis Rep, 59: 377-380.

Sadek, M. E., Shabana, Y. M., Sayed-Ahmed, K., Tabl, A. H. A. 2022. Antifungal activities of sulfur and copper nanoparticles against cucumber postharvest diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum. J Fungi, 8: 412. https://doi.org/10.3390/jof8040412 DOI: https://doi.org/10.3390/jof8040412

Sambrook, J., and Russell, D. W. 2006. Fragmentation of DNA by sonication. Cold Spring Harb. Protoc, 4: 4538. DOI: https://doi.org/10.1101/pdb.prot4538

Sharma, S. 2006. Integrated management of powdery mildew of apple, ICAR Adhoc Research Scheme. Final Report (2003-2006). KrishiKosh. 1-39. Available: https://krishi. icar.gov.in/ohs-2.3.1/index.php/record/view/17537

Siddappa, B., Amaresh, Y. S., Naik, M. K., Sunkad, G., Sreenivas, A. G., Hussain, A., and Asawathanarayan, D. S. 2013. Survey and surveillance of okra powdery mildew in north eastern Karnataka. J Plant Dis Sci, 8: 96-98. https://doi.org/10.1080/096708797228672 DOI: https://doi.org/10.1080/096708797228672

Urbez-Torres, J. R., Haag, P., Bowen, P., and Ogorman, D. T. 2014. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Dis, 98: 469-482. https://doi.org/10.1094/PDIS-05-13- 0523-RE DOI: https://doi.org/10.1094/PDIS-05-13-0523-RE

Vimala, R., and Suriachandraselvan, M. 2009. Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. J. Biopestic, 2(1): 111-114.

Walters, D. R., Walker, R. L., and Walker, K. C. 2003. Lauric acid exhibits antifungal activity against plant pathogenic fungi. J Phytopathol, 151(4): 228-230. https://doi. org/10.1046/j.1439-0434.2003.00713.x DOI: https://doi.org/10.1046/j.1439-0434.2003.00713.x

Wang, H., Wang, J., and Liu, J. 2010. Determination of flavour compounds in pig milk by simultaneous distillation extraction or solid phase microextraction combined with gas chromatography mass spectrometry. Chin. J. Anim. Sci., 46(17): 62-66. https://doi.org/10.1016/ S0254-6272(13)60055-2

Wang, Y., Chang, L., Zhao, X., Meng, X., and Liu, Y. 2012. Gas chromatography-mass spectrometry analysis on compounds in volatile oils extracted from Yuan Zhi (Radix Polygalae) and Shi Chang Pu (Acorus Tatarinowii) by supercritical CO2. J Tradit Chin Med, 32(3): 459-464. DOI: https://doi.org/10.1016/S0254-6272(13)60055-2

Weindling, R. 1932. Trichoderma lignorum as a parasite of other soil fungi. Phytopathol. 22: 837–45.

Wheeler, B. E. J. 1969. An Introduction to Plant Diseases, John Wiley and Sons Limited, London, U.K. pp. 374.

Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot, 52: 487-511. PMid: 11326055. https://doi.org/10.1093/jxb/52.suppl_1.487 DOI: https://doi.org/10.1093/jexbot/52.suppl_1.487

White, T. J., Bruns, T., Lee, S. J., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications, 18(1): 315-322. https:// doi.org/10.1016/B978-0-12-372180-8.50042-1 DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wischmeyer, P. E. 2003. Clinical applications of L‐glutamine: past, present, and future. Nutr Clin Pract, 18(5): 377- 385. https://doi.org/10.1177/0115426503018005377 DOI: https://doi.org/10.1177/0115426503018005377

Zhou, S., Smith, D. R., and Stanosz, R. G. 2001. Differentiation of Botryosphaeria species and related anamorphic fungi using Inter Simple or Short Sequence Repeat. Mycol Res, 105(8): 919-926. https://doi.org/10.1016/S0953- 7562(08)61947-4 DOI: https://doi.org/10.1016/S0953-7562(08)61947-4