Brousseau’s Reciprocal Sums Involving Balancing and Lucas-Balancing Numbers
DOI:
https://doi.org/10.18311/jims/2022/22177Keywords:
Balancing numbers, Lucas-balancing numbers, gap balancing numbers, t-balancing numbersAbstract
In this paper, we derive the closed form expressions for the finite and infinite sums with summands having products of balancing and Lucas-balancing numbers in the denominator. We present some generalized Brousseau’s sums for balancing and Lucas-balancing numbers.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 S. G. Rayaguru, G. K. Panda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2021-09-13
Published 2022-01-27
References
K. Adegoke, Generalizations of the Reciprocal Fibonacci-Lucas Sums of Brousseau, J. Integer Seq., Vol. 21 (2018), Article 18.1.6.
A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37(2) (1999), 98–105.
Bro. A. Brousseau, Summation of Infinite Fibonacci series, Fib. Quart., 7 (1969), 143–168.
Bro. A. Brousseau, Fibonacci-Lucas Infinite Series-Research Topic, Fib. Quart., 7 (1969), 211–217.
R. K. Davala and G. K. Panda, On Sum and Ratio Formulas for Balancing Numbers, J. Indian Math. Soc., 82(1-2) (2015), 23–32.
R. Frontczak, New results on reciprocal series related to Fibonacci and Lucas numbers with subscripts in arithmetic progression, Int. J. Contemporary Math. Sci., 11 (2016), 509–516. DOI: https://doi.org/10.12988/ijcms.2016.61063
G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194 (2009), 185–189.
S. G. Rayaguru and G. K. Panda, Some infinite product identities involving balancing and Lucas-balancing numbers, Alabama J. Math., 42 (2018).
S. G. Rayaguru and G. K. Panda, Sum Formulas Involving Powers of Balancing and Lucas-balancing Numbers, J. Indian Math. Society, 86(1-2) (2019), 1–24.
S. G. Rayaguru and G. K. Panda, Sum Formulas Involving Powers of Balancing and Lucas-balancing Numbers-II, Notes on Number Theory and Discrete Mathematics, 25(3) (2019), 102–110. DOI: https://doi.org/10.7546/nntdm.2019.25.3.102-110