Brousseau’s Reciprocal Sums Involving Balancing and Lucas-Balancing Numbers

Jump To References Section

Authors

  • Department of Center for Data Science, Siksha ’O’ Anusandhan Deemed to be University, Bhubaneswar - 751 030 ,IN
  • Department of Mathematics, National Institute of Technology, Rourkela - 769 008 ,IN

DOI:

https://doi.org/10.18311/jims/2022/22177

Keywords:

Balancing numbers, Lucas-balancing numbers, gap balancing numbers, t-balancing numbers
11B39

Abstract

In this paper, we derive the closed form expressions for the finite and infinite sums with summands having products of balancing and Lucas-balancing numbers in the denominator. We present some generalized Brousseau’s sums for balancing and Lucas-balancing numbers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-01-27

How to Cite

Rayaguru, S. G., & Panda, G. K. (2022). Brousseau’s Reciprocal Sums Involving Balancing and Lucas-Balancing Numbers. The Journal of the Indian Mathematical Society, 89(1-2), 145–166. https://doi.org/10.18311/jims/2022/22177
Received 2018-09-07
Accepted 2021-09-13
Published 2022-01-27

 

References

K. Adegoke, Generalizations of the Reciprocal Fibonacci-Lucas Sums of Brousseau, J. Integer Seq., Vol. 21 (2018), Article 18.1.6.

A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37(2) (1999), 98–105.

Bro. A. Brousseau, Summation of Infinite Fibonacci series, Fib. Quart., 7 (1969), 143–168.

Bro. A. Brousseau, Fibonacci-Lucas Infinite Series-Research Topic, Fib. Quart., 7 (1969), 211–217.

R. K. Davala and G. K. Panda, On Sum and Ratio Formulas for Balancing Numbers, J. Indian Math. Soc., 82(1-2) (2015), 23–32.

R. Frontczak, New results on reciprocal series related to Fibonacci and Lucas numbers with subscripts in arithmetic progression, Int. J. Contemporary Math. Sci., 11 (2016), 509–516. DOI: https://doi.org/10.12988/ijcms.2016.61063

G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194 (2009), 185–189.

S. G. Rayaguru and G. K. Panda, Some infinite product identities involving balancing and Lucas-balancing numbers, Alabama J. Math., 42 (2018).

S. G. Rayaguru and G. K. Panda, Sum Formulas Involving Powers of Balancing and Lucas-balancing Numbers, J. Indian Math. Society, 86(1-2) (2019), 1–24.

S. G. Rayaguru and G. K. Panda, Sum Formulas Involving Powers of Balancing and Lucas-balancing Numbers-II, Notes on Number Theory and Discrete Mathematics, 25(3) (2019), 102–110. DOI: https://doi.org/10.7546/nntdm.2019.25.3.102-110