Shift Balancing Numbers
DOI:
https://doi.org/10.18311/jims/2020/24872Keywords:
Balancing numbers, Lucas-balancing numbers, Gap balancing numbers, t−balancing numbersAbstract
For each positive integer k, the Diophantine equation (k+1)+(k+2)+···+(n−1) = (n+1)+(n+2)+···+(n+r) is studied.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 S. G. Rayaguru, G. K. Panda, R. K. Davala
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2020-04-10
Published 2020-05-15
References
A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37(2) (1999), 98–105.
K. K. Dash and R. S. Ota, t−Balancing Numbers, Int. J. Contemp. Math. Sciences, 7 (2012), 1999– 2012.
R. K. Davala and G. K. Panda, On sum and ratio formulas for balancing numbers, J. Ind. Math. Soc., 82(1-2) (2015), 23–32.
R. P. Finkelstein, The House Problem, Amer. Math. Monthly, 72 (1965), 1082–1088.
T. Kovács, K. Liptai and P. Olajos, On (a,b)-balancing numbers, Publ. Math. Debrecen, 77(3) (2010).
K. Liptai, Fibonacci Balancing Numbers, Fibonacci Quart., 42(4) (2004), 330–340.
K. Liptai, Lucas balancing numbers, Commun. Math., 14(1) (2006), 43–47.
R. A. Mollin, Fundamental number theory with applications, Boca Raton, CRC press, London (2004).
G. K. Panda and R. K. Davala, Perfect balancing numbers, Fibonacci Quart., 53(3) (2015), 261–264.
G. K. Panda and P. K. Ray, Cobalancing numbers and cobalancers, Internat. J. Math. Math. Sci., 8 (2005), 1189–1200.
G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194, (2009), 185–189.
G. K. Panda and A. K. Panda, Almost balancing numbers, J. Ind. Math. Soc., 82(3-4) (2015), 147–156.
G. K. Panda and S. S. Rout, Periodicity of balancing numbers, Acta. Math. Hungar., 143(2) (2014), 274–286.
S. S. Rout and G. K. Panda, k-gap balancing numbers, Mathematika, 70(1) (2015), 109–121.
S. S. Rout, R. K. Davala and G. K. Panda, Stability of balancing sequence modulo p, Unif. Distrib. Theory, 10(2) (2015), 77–91.