On α-prime Ideals in the Semiring of Non-Negative Integers
DOI:
https://doi.org/10.18311/jims/2021/27833Keywords:
Principal ideal, Prime ideal, α-prime idealAbstract
Characterizations of α-prime ideals in the semiring of non- negative integers are investigated.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dipak Ravindra Bonde, Jayprakash Ninu Chaudhari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2021-05-19
Published 2021-06-14
References
P. J. Allen and L. Dale, Ideal theory in the semiring Z+ 0 , Publ. Math. Debrecen, 22 (1975), 219 - 224.
Ayman Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417 - 429.
J. N. Chaudhari, 2-absorbing ideals in the semiring of non-negative integers, J. Indian Math. Soc., 80 (3-4) (2013), 235 - 241.
J. N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra, 6 (2012), 265 - 270.
J. N. Chaudhari and V. Gupta, Weak primary decomposition theorem for right Noe- therian semirings, Indian J. Pure Appl. Math., 25 (6) (1994), 647 - 654.
J. N. Chaudhari and K. J. Ingale, A note on the ideal of the semiring Z+ 0 , J. Indian Math. Soc., 79 (2012), 33 - 39.
Ahmad Yousefian Darani, On 2-Absorbing and Weakly 2-Absorbing Ideals of Commu- tative Semirings, Kyungpook Math. J., 52 (2012), 91 - 97.
J. S. Golan, Semirings and their applications, Kluwer Academic Publishers, Dordrecht, 1999.
Vishnu Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Mathematicki, 12 (2003), 13 - 18.
Vishnu Gupta and J. N. Chaudhari, Prime ideals in semirings, Bull. Malays. Math. Sci. Soc., 34 (2) (2011), 417{421.
Thawatchai Khumprapussorn, On -prime and weakly -prime submodules, European J. Pure and Appl. Math., 3 (2018) 730 - 739.
H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914 - 920.