On K-regular Additive Ternary Semirings

Jump To References Section

Authors

  • Department of Mathematics, M. J. College, Jalgaon - 425002 ,IN
  • Department of Mathematics, M. J. College, Jalgaon - 425002 ,IN
  • Department of Mathematics, ACS College, Dharangaon - 425 105 ,IN
  • Department of Mathematics, M. J. College, Jalgaon - 425002 ,IN

DOI:

https://doi.org/10.18311/jims/2022/29309

Keywords:

Additive ternary semiring, additively idempotent additive ternary semiring, k-regular additive ternary semiring, k-invertible additive ternary semiring

Abstract

We introduce the concepts of a k-regular and a k-invertible additive ternary semiring. We show that (i) If I is a k-regular ideal of an additive ternary semiring S and J is any ideal of S, then I ? J is a k-regular ideal of S; (ii) If S is an additively idempotent, commutative additive ternary semiring and x ? S, then M (x) is a commutative additive ternary monoid of (S, +); (iii) An additively idempotent additive ternary semiring S is k-regular if and only if S is k-invertible; (iv) Let S be an additively and lateral cancellative additive ternary semiring. If a, b ? S, then V (a) and V (b) are either disjoint or equal.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-01-27

How to Cite

Julal Ingale, K., Premraj Bendale, H., Ravindra Bonde, D., & Ninu Chaudhari, J. (2022). On <i>K</i>-regular Additive Ternary Semirings. The Journal of the Indian Mathematical Society, 89(1-2), 72–83. https://doi.org/10.18311/jims/2022/29309
Received 2022-01-11
Accepted 2023-01-30
Published 2022-01-27

 

References

M. R. Adhikari, M. K. Sen and H. J. Weinert, On k-regular semrings, Bull. Cal. Math. Soc., 88 (1996), 141–144.

S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 163–170. DOI: https://doi.org/10.1073/pnas.37.3.163

J. N. Chaudhari, H. P. Bendale and K. J. Ingale, Regular ternary semirings, J. Adv. Res. Pure Math., 4(3) (2012), 68–76. DOI: https://doi.org/10.5373/jarpm.1046.071811

J. N. Chaudhari and K. J. Ingale, On k-regular semirings, J. Indian Math. Soc., 82 (3–4), (2015), 1–11.

T. K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, Worid Scientific (2003), 343–355. DOI: https://doi.org/10.1142/9789812705808_0027

Shamik Ghosh, A note on regularity in matrix semirings, Kyungpook Math. J., 44 (2004), 1–4.

J. S. Golan, Semiring and Their Applications, Kluwer Academic publisher Dordrecht, 1999.

Vishnu Gupta and J. N. Chaudhari, On right -regular semirings, Sarajevo J. Math., 2(14) (2006), 3–9.

W. G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971) 37–55. DOI: https://doi.org/10.1090/S0002-9947-1971-0272835-6

A. Pop, Remarks on embedding theorems of (m, n)-semirings, Bul. Stiint. Univ. Baia Mare Ser. B, Mathematica–Informatica 16 (2000), 297–302.

M. K. Sen and A. K. Bhuniya, Completely k-regular semirings, Bull. Cal. Math. Soc., 97(5) (2005), 455–466.

H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. DOI: https://doi.org/10.1090/S0002-9904-1934-06003-8