On K-regular Additive Ternary Semirings
DOI:
https://doi.org/10.18311/jims/2022/29309Keywords:
Additive ternary semiring, additively idempotent additive ternary semiring, k-regular additive ternary semiring, k-invertible additive ternary semiringAbstract
We introduce the concepts of a k-regular and a k-invertible additive ternary semiring. We show that (i) If I is a k-regular ideal of an additive ternary semiring S and J is any ideal of S, then I ? J is a k-regular ideal of S; (ii) If S is an additively idempotent, commutative additive ternary semiring and x ? S, then M (x) is a commutative additive ternary monoid of (S, +); (iii) An additively idempotent additive ternary semiring S is k-regular if and only if S is k-invertible; (iv) Let S be an additively and lateral cancellative additive ternary semiring. If a, b ? S, then V (a) and V (b) are either disjoint or equal.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kunal Julal Ingale, Hemant Premraj Bendale, Dipak Ravindra Bonde, Jayprakash Ninu Chaudhari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2022-01-27
References
M. R. Adhikari, M. K. Sen and H. J. Weinert, On k-regular semrings, Bull. Cal. Math. Soc., 88 (1996), 141–144.
S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 163–170. DOI: https://doi.org/10.1073/pnas.37.3.163
J. N. Chaudhari, H. P. Bendale and K. J. Ingale, Regular ternary semirings, J. Adv. Res. Pure Math., 4(3) (2012), 68–76. DOI: https://doi.org/10.5373/jarpm.1046.071811
J. N. Chaudhari and K. J. Ingale, On k-regular semirings, J. Indian Math. Soc., 82 (3–4), (2015), 1–11.
T. K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, Worid Scientific (2003), 343–355. DOI: https://doi.org/10.1142/9789812705808_0027
Shamik Ghosh, A note on regularity in matrix semirings, Kyungpook Math. J., 44 (2004), 1–4.
J. S. Golan, Semiring and Their Applications, Kluwer Academic publisher Dordrecht, 1999.
Vishnu Gupta and J. N. Chaudhari, On right -regular semirings, Sarajevo J. Math., 2(14) (2006), 3–9.
W. G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971) 37–55. DOI: https://doi.org/10.1090/S0002-9947-1971-0272835-6
A. Pop, Remarks on embedding theorems of (m, n)-semirings, Bul. Stiint. Univ. Baia Mare Ser. B, Mathematica–Informatica 16 (2000), 297–302.
M. K. Sen and A. K. Bhuniya, Completely k-regular semirings, Bull. Cal. Math. Soc., 97(5) (2005), 455–466.
H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. DOI: https://doi.org/10.1090/S0002-9904-1934-06003-8