On Topological Bihyperbolic Modules

Jump To References Section

Authors

  • 28, Dolua Dakshinpara Haridas Primary School Beldanga, Murshidabad Pin-742133, West Bengal ,IN
  • Department of Mathematics, Kazi Nazrul University, Nazrul Road, P.O.- Kalla C.H. Asansol-713340, West Bengal ,IN
  • Department of Mathematics University of Kalyani, P.O.-Kalyani, Dist-Nadia, PIN-741235, West Bengal ,IN

DOI:

https://doi.org/10.18311/jims/2023/34192

Keywords:

Bihyperbolic Modules, Topological Bihyperbolic Modules, Bihyperbolic Convexity, Bihyperbolic-Valued Seminorms, Bihyperbolic-Valued Minkowski Functionals, Locally Bihyperbolic Convex Modules.

Abstract

In this paper, we introduce topological modules over the ring of bihyperbolic numbers. We discuss bihyperbolic convexity, bihyperbolic-valued seminorms and bihyperbolic-valued Minkowski functionals in topological bihyperbolic modules. Finally we introduce locally bihyperbolic convex modules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-07-12

How to Cite

Mondal, S., Ghosh, C., & Datta, S. K. (2023). On Topological Bihyperbolic Modules. The Journal of the Indian Mathematical Society, 90(3-4), 233–248. https://doi.org/10.18311/jims/2023/34192

 

References

M. Bilgin and S. Ersoy, Algebraic properties of bihyperbolic numbers, Advances in Applied Clifford Algebras, 30 (1):13(2020).

J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra, Lond-Dublin-Edinb. Philos. Mag., 3 (33)(1848), 435-439.

R. Kumar, R. Kumar and D. Rochon, The fundamental theorems in the framework of bicomplex topological modules, arXiv: 1109.3424v1(2011).

R. Kumar and H. Saini, Topological bicomplex modules, Adv. Appl. Clifford Algebras, 26 (4)(2016), 1249-1270.

R. Larsen, Functional Analysis: An Introduction, Marcel Dekker, New York 1973.

M. E. Luna-Elizarraras, C. O. Perez-Regalado and M. Shapiro, On linear functionals and Hahn–Banach theorems for hyperbolic and bicomplex modules, Adv. Appl. Clifford Algebras, 24 (2014), 1105-1129.

L. Narici and E. Beckenstein, Topological Vector Spaces, Marcel Dekker, New York 1985.

S. Olariu, Complex Numbers in n-dimensions, North-Holland Mathematics Studies, Elsevier, Amsterdam, Boston, 190 (2002), 51-148.

A. A. Pogorui, R. M. Rodriguez-Dagnino and R. D. Rodrigue-Said, On the set of zeros of bihyperbolic polynomials, Complex Var. Elliptic Equ. 53 (7)(2008), 685-690.

W. Rudin, Functional Analysis, 2nd edn., McGraw Hill, New York 1991.

C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici (The real representation of complex elements and hyperalgebraic entities), Math. Ann., 40 (1892), 413-467.