Kolmogorov’s Axioms for Bihyperbolic Valued Probabilities

Jump To References Section

Authors

  • 28, Dolua Dakshinpara Haridas Primary School, Beldanga, Murshidabad,Pin-742133, West Bengal ,IN
  • Depatment of Mathematics, Kazi Nazrul University, Nazrul Road, P.O.- Kalla C.H.,Asansol-713340, West Bengal ,IN
  • Department of Mathematics, University of Kalyani, P.O.-Kalyani, Dist-Nadia,741235, West Bengal ,IN

DOI:

https://doi.org/10.18311/jims/2024/36135

Keywords:

Bihyperbolic numbers, Canonical representation, Null cone, Bihyperbolic valued probabilistic measure, Conditional probability.

Abstract

In this paper we introduce probabilistic measure which takes values in bihyperbolic numbers and generalize Kolmogorov’s system of axioms. We study the zero divisors of the set of bihyperbolic numbers and keeping it in mind, we define conditional bihyperbolic probability and prove bihyperbolic analogues of the multiplication theorem, of the law of total probability and Bayes’ theorem.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-01-01

How to Cite

Mondal, S., Ghosh , C., & Datta, S. K. (2024). Kolmogorov’s Axioms for Bihyperbolic Valued Probabilities. The Journal of the Indian Mathematical Society, 91(1-2), 25–44. https://doi.org/10.18311/jims/2024/36135

 

References

D. Alpay, M. E. Luna-Elizarrar´as and M. Shapiro, Kolmogorov’s axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebras, 27 (2)(2017), 913-929.

M. Bilgin and S. Ersoy, Algebraic properties of bihyperbolic numbers, Advances in Applied Clifford Algebras, 30 (1):13(2020).

F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti and P. Zampetti, The Mathematics of Minkowski Space-time with an Introduction to Commutative Hypercomplex Numbers, Birkhauser Verlag, Basel, Boston, Berlin (2008), 1-265.

J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra, Lond-Dublin-Edinb. Philos. Mag., 3 (33)(1848), 435-439.

W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin (1853).

S. Olariu, Complex Numbers in n-dimensions, North-Holland Mathematics Studies, Elsevier, Amsterdam, Boston, 190 (2002), 51-148.

A. A. Pogorui, R. M. Rodriguez-Dagnino and R. D. Rodrigue-Said, On the set of zeros of bihyperbolic polynomials, Complex Var. Elliptic Equ., 53 (7)(2008), 685-690.

C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici (The real representation of complex elements and hyperalgebraic entities), Math. Ann., 40 (1892), 413-467.