Kolmogorov’s Axioms for Bihyperbolic Valued Probabilities
DOI:
https://doi.org/10.18311/jims/2024/36135Keywords:
Bihyperbolic numbers, Canonical representation, Null cone, Bihyperbolic valued probabilistic measure, Conditional probability.Abstract
In this paper we introduce probabilistic measure which takes values in bihyperbolic numbers and generalize Kolmogorov’s system of axioms. We study the zero divisors of the set of bihyperbolic numbers and keeping it in mind, we define conditional bihyperbolic probability and prove bihyperbolic analogues of the multiplication theorem, of the law of total probability and Bayes’ theorem.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Soumen Mondal, Chinmay Ghosh , Sanjib Kumar Datta
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
D. Alpay, M. E. Luna-Elizarrar´as and M. Shapiro, Kolmogorov’s axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebras, 27 (2)(2017), 913-929.
M. Bilgin and S. Ersoy, Algebraic properties of bihyperbolic numbers, Advances in Applied Clifford Algebras, 30 (1):13(2020).
F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti and P. Zampetti, The Mathematics of Minkowski Space-time with an Introduction to Commutative Hypercomplex Numbers, Birkhauser Verlag, Basel, Boston, Berlin (2008), 1-265.
J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra, Lond-Dublin-Edinb. Philos. Mag., 3 (33)(1848), 435-439.
W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin (1853).
S. Olariu, Complex Numbers in n-dimensions, North-Holland Mathematics Studies, Elsevier, Amsterdam, Boston, 190 (2002), 51-148.
A. A. Pogorui, R. M. Rodriguez-Dagnino and R. D. Rodrigue-Said, On the set of zeros of bihyperbolic polynomials, Complex Var. Elliptic Equ., 53 (7)(2008), 685-690.
C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici (The real representation of complex elements and hyperalgebraic entities), Math. Ann., 40 (1892), 413-467.