Application and Challenges of Machine Learning Techniques in Mining Engineering and Material Science
DOI:
https://doi.org/10.18311/jmmf/2023/36099Keywords:
AI, Data Science, Engineering, Machine Learning, Material Science, MiningAbstract
The ultimate objective of modern engineering applications in mining and material science is to develop good quality novel materials with desirable qualities. Machine Learning (ML) is used in the mining industry to provide solutions to complex problems of the mining industry and improve the efficiency of the overall system. ML methods are increasingly being used by materials scientists to uncover hidden trends in data and generate predictions. Furthermore, data centric techniques can provide useful insights into the basic processes that influence material behaviour while simultaneously reducing human labour in large data processing. The ability of persons to find new materials and infer complex relationships is important for the development of new materials. Large amounts of machine-readable data must be available to use statistical methodologies to speed materials research. In mining engineering, ML can be used for analyzing geographical data, assessing the risk of rock fall, predicting equipment failures and impact of mining activities on the environment etc. Material science data may be used in a variety of ways, including property prediction, the search for new materials and discovering synthesis methods. Selecting proper machine learning techniques to provide solutions is very important and that is discussed here. The purposes of this paper are to provide a comprehensive list of different ML techniques which are applied for the mining and material science domain.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Jung D, Choi Y. Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation. Minerals. 2021 Jan 31; 11(2):148. DOI: https://doi.org/10.3390/min11020148
Machine learning in Mining, https://groundhogapps. com/machine-learning-in-mining/
Abd Elwahab A, Topal E, Jang HD. Review of machine learning application in mine blasting. Arabian Journal of Geosciences. 2023 Feb; 16(2):133. DOI: https://doi.org/10.1007/s12517-023-11237-z
Azhari F, Sennersten CC, Lindley CA, Sellers E. Deep learning implementations in mining applications: a compact critical review. Artificial Intelligence Review. 2023 May 11:1-36.
Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. Journal of Materiomics. 2017 Sep 1; 3(3):159-77. DOI: https://doi.org/10.1016/j.jmat.2017.08.002
Chibani S, Coudert FX. Machine learning approaches for the prediction of materials properties. Apl Materials. 2020 Aug 1; 8(8). DOI: https://doi.org/10.1063/5.0018384
Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Frontiers in Materials. 2019 May 15; 6:110. DOI: https://doi.org/10.3389/fmats.2019.00110
Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. Journal of Materiomics.
Sep 1; 3(3):159-77.
Hill J, Mulholland G, Persson K, Seshadri R, Wolverton C, Meredig B. Materials science with large-scale data and informatics: Unlocking new opportunities. Mrs Bulletin. 2016 May; 41(5):399-409. DOI: https://doi.org/10.1557/mrs.2016.93
Jain A, Hautier G, Ong SP, Persson K. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. Journal of Materials Research. 2016 Apr; 31(8):977-94. DOI: https://doi.org/10.1557/jmr.2016.80
Kalidindi SR, Medford AJ, McDowell DL. Vision for data and informatics in the future materials innovation ecosystem. JOM. 2016 Aug; 68:2126-37. DOI: https://doi.org/10.1007/s11837-016-2036-5
Alpaydin E. Introduction to machine learning. MIT press; 2020 Mar 24.
Available from: https://www.kaggle.com
Available from: https://archive.ics.uci.edu/ml
Available from: https://data.world/datasets/minerals
Available from: https://gee-community-catalog.org/ projects/global_mining/
Available from: https://zenodo.org/records/7328050
Available from: https://www.kaggle.com/datasets/edu-magalhaes/quality-prediction-in-a-mining-process
Available from: https://library.bath.ac.uk/research-data/finding-data/engineering-sciences
Available from: https://data.world/datasets/materials
Available from: https://www.ccdc.cam.ac.uk
Available from: https://icsd.fiz-karlsruhe.de
Available from: http://crystallography.net
Available from: http://www.icdd.com/
Available from: http://gdb.unibe.ch/downloads/)
Available from: https://zinc15.docking.org/)
Available from: https://figshare.com/articles/dataset/ MAST-ML_Education_Datasets/7017254
Available from: https://data.mendeley.com/journal/09270256
Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence. 2013 Mar 7; 35(8):1798-828. DOI: https://doi.org/10.1109/TPAMI.2013.50
Bellman RE, Dreyfus SE. Applied dynamic program- ming. Princeton university press; 2015 Dec 8.
Doreswamy, Hemanth KS. Similarity based cluster Analysis on engineering materials data sets. In Advances in Computer Science, Engineering & Applications: Proceedings of the Second International Conference on Computer Science, Engineering & Applications (ICCSEA 2012), May 25-27, 2012, New Delhi, India. Volume 2 2012 (pp. 161-168). Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-30111-7_16
Li S, Sari YA, Kumral M. Optimization of mining–mineral processing integration using unsupervised machine learning algorithms. Natural Resources Research. 2020 Oct; 29:3035-46. DOI: https://doi.org/10.1007/s11053-020-09628-0
Louloudis G, Louloudis E, Roumpos C. Unsupervised Machine Learning Applications on Greek Lignite Mining Industry. Proceedings of the 14th International Symposium of Continuous Surface Mining. 2018.
Parker AJ, Barnard AS. Selecting appropriate clustering methods for materials science applications of machine learning. Advanced Theory and Simulations. 2019; 2(12):1900145. DOI: https://doi.org/10.1002/adts.201900145
Baichuan S, Barnard AS. Visualising multi-dimensional structure/property relationships with machine learning. Journal of Physics: Materials. 2019; 2(3):034003. DOI: https://doi.org/10.1088/2515-7639/ab0faa
Wang Z, Zuo R, Yang F. Geological mapping using direct sampling and a convolutional neural network based on geochemical survey data. Mathematical Geosciences. 2022 Sep; 26:1-24.
Chen Y, Lu L. The anomaly detector, semi-supervised classifier, and supervised classifier based on K-nearest neighbors in geochemical anomaly detection: a comparative study. Mathematical Geosciences. 2023 Mar; 27:1-23. DOI: https://doi.org/10.1007/s11004-022-10042-w
Harvey AS, Fotopoulos G. Geological mapping using machine learning algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016 Jun 23; 41:423-30. DOI: https://doi.org/10.5194/isprsarchives-XLI-B8-423-2016
Wills BA, Napier-Munn TJ. Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th ed.; Butterworth-Heinemann: Burlington, MA, USA, 2006. pp. 7–8.
Leroy S, Pirard, E. Mineral recognition of single particles in ore slurry samples by means of multispectral image processing. Miner Eng. 2019; 132:228–237. DOI: https://doi.org/10.1016/j.mineng.2018.12.009
Jooshaki M, Nad A, Michaux S. A systematic review on the application of machine learning in exploiting mineralogical data in mining and mineral industry. Minerals. 2021 Jul 28; 11(8):816. DOI: https://doi.org/10.3390/min11080816
Qiu D, Li X, Xue Y, Fu K, Zhang W, Shao T, Fu Y. Analysis and prediction of rockburst intensity using improved DS evidence theory based on multiple machine learning algorithms. Tunnelling and Underground Space Technology. 2023 Oct 1; 140:105331. DOI: https://doi.org/10.1016/j.tust.2023.105331
Xue Y, Bai C, Qiu D, Kong F, Li Z. Predicting rockburst with database using particle swarm optimization and extreme learning machine. Tunnelling and Underground Space Technology. 2020 Apr 1; 98:103287. DOI: https://doi.org/10.1016/j.tust.2020.103287
Mutlag WK, Ali SK, Aydam ZM, Taher BH. Feature extraction methods: a review. In Journal of Physics: Conference Series 2020 Jul 1 (Vol. 1591, No. 1, p. 012028). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1591/1/012028
Dimiduk DM, Holm EA, Niezgoda SR. Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integrating Materials and Manufacturing Innovation. 2018 Sep; 7:157-72. DOI: https://doi.org/10.1007/s40192-018-0117-8
Wieder O, Kohlbacher S, Kuenemann M, Garon A, Ducrot P, Seidel T, Langer T. A compact review of molecular property prediction with graph neural net- works. Drug Discovery Today: Technologies. 2020 Dec 1; 37:1-2. DOI: https://doi.org/10.1016/j.ddtec.2020.11.009
Wagner N, Rondinelli JM. Theory-guided machine learning in materials science. Frontiers in Materials. 2016 Jun 27; 3:28. DOI: https://doi.org/10.3389/fmats.2016.00028
Stoll A, Benner P. Machine learning for material characterization with an application for predicting mechanical properties. GAMM‐Mitteilungen. 2021 Mar; 44(1):e202100003. DOI: https://doi.org/10.1002/gamm.202100003
Ford E, Maneparambil K, Rajan S, Neithalath N. Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis. Computational Materials Science. 2021; 191. DOI: https://doi.org/10.1016/j.commatsci.2021.110328
Liu J, Zhang Y, Zhang Y, Kitipornchai S, Yang J. Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation. Materials & Design. 2022 Jan 1; 213:110334. DOI: https://doi.org/10.1016/j.matdes.2021.110334
Pathan MV, Ponnusami SA, Pathan J, Pitisongsawat R, Erice B, Petrinic N, Tagarielli VL. Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning. Scientific Reports. 2019 Sep 27; 9(1):13964. DOI: https://doi.org/10.1038/s41598-019-50144-w
Santos I, Nieves J, Penya YK, Bringas PG. Machine- learning-based mechanical properties prediction in foundry production. In 2009 Iccas-Sice 2009 Aug 18 (pp. 4536-4541). IEEE. DOI: https://doi.org/10.1109/INDIN.2009.5195774
Pattanayak S, Dey S, Chatterjee S, Chowdhury SG, Datta S. Computational intelligence based designing of microalloyed pipeline steel. Computational Materials Science. 2015 Jun 15; 104:60-8. DOI: https://doi.org/10.1016/j.commatsci.2015.03.029
Shigemori H, Kano M, Hasebe S. Optimum quality design system for steel products through locally weighted regression model. Journal of Process Control. 2011 Feb 1; 21(2):293-301. DOI: https://doi.org/10.1016/j.jprocont.2010.06.022
Shigemori H, Kawamura S. Optimum quality design support system for steel products using locally-weighted regression model. In SICE Annual Conference 2007. 2007 Sep 17 (pp. 810-815). IEEE.
Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review. 1965 Nov 15; 140(4A):A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133
Schleder GR, Padilha AC, Acosta CM, Costa M, Fazzio A. From DFT to machine learning: recent approaches to materials science–a review. Journal of Physics: Materials. 2019 May 16; 2(3):032001. DOI: https://doi.org/10.1088/2515-7639/ab084b
Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques MA. Predicting the thermodynamic stability of solids com- bining density functional theory and machine learning. Chemistry of Materials. 2017 Jun 27; 29(12):5090-103. DOI: https://doi.org/10.1021/acs.chemmater.7b00156
Shetty V, Shedthi S, Kumaraswamy J. Predicting the thermodynamic stability of perovskite oxides using multiple machine learning techniques. Materials Today: Proceedings. 2022 Jan 1; 52:457-61. DOI: https://doi.org/10.1016/j.matpr.2021.09.208
Kauwe SK, Graser J, Murdock R, Sparks TD. Can machine learning find extraordinary materials? Computational Materials Science. 2020 Mar 1; 174:109498. DOI: https://doi.org/10.1016/j.commatsci.2019.109498
Schmidt J, Marques MR, Botti S, Marques MA. Recent advances and applications of machine learning in solid- state materials science. npj Computational Materials. 2019 Aug 8; 5(1):83. DOI: https://doi.org/10.1038/s41524-019-0221-0
Xiong Z, Cui Y, Liu Z, Zhao Y, Hu M, Hu J. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Computational Materials Science. 2020 Jan 1; 171:109203. DOI: https://doi.org/10.1016/j.commatsci.2019.109203
Westermayr J, Gastegger M, Schütt KT, Maurer RJ. Perspective on integrating machine learning into com- putational chemistry and materials science. The Journal of Chemical Physics. 2021 Jun 21; 154(23). DOI: https://doi.org/10.1063/5.0047760
Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Materials and design. 2007 Jan 1; 28(6):1747-52. DOI: https://doi.org/10.1016/j.matdes.2007.02.009
Merayo D, Rodríguez-Prieto A, Camacho AM. Prediction of mechanical properties by artificial neural networks to characterize the plastic behavior of aluminum alloys. Materials. 2020 Nov 19; 13(22):5227. DOI: https://doi.org/10.3390/ma13225227
Turco C, Funari MF, Teixeira E, Mateus R. Artificial neural networks to predict the mechanical properties of natural fibre-reinforced compressed earth blocks (CEBs). Fibers. 2021 Dec 1; 9(12):78. DOI: https://doi.org/10.3390/fib9120078
Addin O, Sapuan SM, Mahdi E, Othman M. A Naive- Bayes classifier for damage detection in engineering materials. Materials and design. 2007 Jan 1; 28(8):2379-86. DOI: https://doi.org/10.1016/j.matdes.2006.07.018
Addina O, Sapuan SM, Othman M. A naive-bayes classifier and f-folds feature extraction method for materials damage detection. International Journal of Mechanical and Materials Engineering. 2007; 2(1):55-62.
Li Y. Predicting materials properties and behavior using classification and regression trees. Materials Science and Engineering: A. 2006 Oct 15; 433(1-2): 261-8. DOI: https://doi.org/10.1016/j.msea.2006.06.100
Helma C, Cramer T, Kramer S, De Raedt L. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. Journal of Chemical Information and Computer Sciences. 2004 Jul 26; 44(4):1402-11. DOI: https://doi.org/10.1021/ci034254q
Lu WC, Ji XB, Li MJ, Liu L, Yue BH, Zhang LM. Using support vector machine for materials design. Advances in Manufacturing. 2013 Jun; 1:151-9. DOI: https://doi.org/10.1007/s40436-013-0025-2
Bonifácio AL, Mendes JC, Farage MC, Barbosa FS, Barbosa CB, Beaucour AL. Application of Support Vector Machine and Finite Element Method to predict the mechanical properties of concrete. Latin American Journal of Solids and Structures. 2019 Aug 12; 16. DOI: https://doi.org/10.1590/1679-78255297
Amin MN, Khan K, Javed MF, Aslam F, Qadir MG, Faraz MI. Prediction of Mechanical Properties of Fly- Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques. Materials. 2022 May 12; 15(10):3478. DOI: https://doi.org/10.3390/ma15103478
Kumar A. Artificial intelligence algorithms for real-time production planning with incoming new information
in mining complexes. McGill University (Canada); 2020.
Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). Theoretical and Computational Chemistry. 2017. DOI: https://doi.org/10.26434/chemrxiv.5309668.v2
Vasudevan RK, Orozco E, Kalinin SV. Discovering mechanisms for materials microstructure optimization via reinforcement learning of a generative model. Machine Learning: Science and Technology. 2022 Dec 1; 3(4):04LT03. DOI: https://doi.org/10.1088/2632-2153/aca004