Efficient ELM Model With Parameter Optimization Using Pso Algorithms in the Prediction of Combustion Pressure Parameters of Dsi Engine Using Ethanol- Gasoline Blends
DOI:
https://doi.org/10.18311/jmmf/2023/36265Keywords:
ANN, ELM, PSO-ELM, TSIAbstract
The present study focused mainly on developing PSO based ELM model to predict cylinder pressure associated parameters. Performance of PSO-ELM model then compared with ELM model to obtain its credential. For training and testing the models, data has been acquired through experiments on a Twin Spark Ignition (TSI) gasoline engine using EGB as fuel. The various operating variables are treated as input data whereas cylinder pressure associated parameters are treated as output data for the model. The result of the proposed modelling study indicated that PSO-ELM model has obtained the best performance with lowest value of MSE, MAPE (%) and hidden layer size as compared to ELM model. Hence PSO-ELM results in an efficient model structure with great generalization performance. Further, it is also observed that PSO-ELM takes more time as it calls for an iterative procedure for searching the optimal solution as compared to ELM, which takes only a single epoch.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Pavlenko N, Searle S. The potential for advanced biofu- els in India: Assessing the availability of feedstocks and deployable technologies. Int Counc Clean Transp. 2019 Dec.
Kiani MK, Ghobadian B, Tavakoli T, Nikbakht AM, Najafi G. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends. Energy. 2010 Jan 1; 35(1):65-9. DOI: https://doi.org/10.1016/j.energy.2009.08.034
Kiani Deh Kiani M, Ghobadian B, Ommi F, Najafi G, Yusaf T. Artificial neural networks approach for the prediction of thermal balance of SI engine using ethanol-gasoline blends. In Multidisciplinary Research and Practice for Information Systems: IFIP WG 8.4, 8.9/ TC 5 International Cross-Domain Conference and Workshop on Availability, Reliability, and Security, CD-ARES 2012, Prague, Czech Republic, August 20-24, 2012. Proceedings 7 2012 (pp. 31-43). Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-32498-7_3
Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006 Dec 1; 70(1-3):489-501. DOI: https://doi.org/10.1016/j.neucom.2005.12.126
Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541). 2004 Jul 25; 2:985-990
Silva FM, Almeida LB. Acceleration techniques for the backpropagation algorithm. In European Association for Signal Processing Workshop 1990 Feb 15 (pp. 110- 119). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-52255-7_32
Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. International Journal of Machine Learning And Cybernetics. 2011 Jun; 2:107-22. DOI: https://doi.org/10.1007/s13042-011-0019-y
Sebayang AH, Masjuki HH, Ong HC, Dharma S, Silitonga AS, Kusumo F, Milano J. Prediction of engine performance and emissions with Manihot glaziovii bioethanol− Gasoline blended using extreme learning machine. Fuel. 2017 Dec 15; 210:914-21. DOI: https://doi.org/10.1016/j.fuel.2017.08.102
Zeng W, Khalid MA, Han X, Tjong J. A study on extreme learning machine for gasoline engine torque prediction. IEEE Access. 2020 Jun 4; 8:104762-74.
Silitonga AS, Masjuki HH, Ong HC, Sebayang AH, Dharma S, Kusumo F, Siswantoro J, Milano J, Daud K, Mahlia TM, Chen WH. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy. 2018 Sep 15; 159:1075-87. DOI: https://doi.org/10.1016/j.energy.2018.06.202
Zhao Y, Liu R, Liu Z, Liu L, Wang J, Liu W. A review of macroscopic carbon emission prediction model based on machine learning. Sustainability. 2023 Apr 19; 15(8):6876. DOI: https://doi.org/10.3390/su15086876
Mariani VC, Och SH, dos Santos Coelho L, Domingues E. Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models. Applied Energy. 2019 Sep 1; 249:204-21. DOI: https://doi.org/10.1016/j.apenergy.2019.04.126
Wong PK, Wong KI, Vong CM, Cheung CS. Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renewable Energy. 2015 Feb 1; 74:640-7. DOI: https://doi.org/10.1016/j.renene.2014.08.075
Aghbashlo M, Shamshirband S, Tabatabaei M, Yee L, Larimi YN. The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste. Energy. 2016 Jan 1; 94:443-56. DOI: https://doi.org/10.1016/j.energy.2015.11.008
Zeng W, Khalid MA, Han X, Tjong J. A study on extreme learning machine for gasoline engine torque prediction. IEEE Access. 2020 Jun 4; 8:104762-74. DOI: https://doi.org/10.1109/ACCESS.2020.3000152
Wang Y, Heydari H. Developing an extreme learning machine-based model for estimating the isothermal compressibility of biodiesel. International Journal of Chemical Engineering. 2021 Jul 9; 2021:1-7. DOI: https://doi.org/10.1155/2021/6099019
Sahab MG, Toropov VV, Gandomi AH. A review on traditional and modern structural optimization: problems and techniques. Metaheuristic Applications in Structures and Infrastructures. 2013 Jan 1; 25-47. DOI: https://doi.org/10.1016/B978-0-12-398364-0.00002-4
Kaloop MR, Kumar D, Samui P, Gabr AR, Hu JW, Jin X, Roy B. Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases. Applied Sciences. 2019 Aug 7; 9(16):3221. DOI: https://doi.org/10.3390/app9163221
Liu B, Chang H, Li Y, Zhao Y. Carbon emission fore- casting and decoupling based on a combined extreme learning machine model with particle swarm optimization algorithm: the example of Chongqing, China in the “14th Five-Year Plan” period, 2023. DOI: https://doi.org/10.21203/rs.3.rs-2324230/v1
Wong KI, Wong PK, Cheung CS, Vong CM. Modeling and optimization of biodiesel engine performance using advanced machine learning methods. Energy. 2013 Jun 15; 55:519-28. DOI: https://doi.org/10.1016/j.energy.2013.03.057
Baghdadi MA. Measurement and prediction study of the effect of ethanol blending on the performance and pollutants emission of a four-stroke spark ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2008 May 1; 222(5):859-73. DOI: https://doi.org/10.1243/09544070JAUTO732
Cambria E, Huang GB, Kasun LLC, Zhou H, Vong CM, Lin J, Yin J, Cai Z, Liu Q, Li K, et al. Extreme learning machines [trends & controversies]. IEEE Intelligent Systems. 2013; 28(6):30-59. DOI: https://doi.org/10.1109/MIS.2013.140
Javed K, Gouriveau R, Zerhouni N. Sw-elm: A summation wavelet extreme learning machine algorithm with a priori parameter initialization. Neurocomputing. 2014; 123:299-307. DOI: https://doi.org/10.1016/j.neucom.2013.07.021
Wan C, Xu Z, Pinson P, Dong ZY, Wong KP. Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Transactions on Power Systems. 2014; 29(3):1033-1044. DOI: https://doi.org/10.1109/TPWRS.2013.2287871
Huang G, Huang GB, Song S, You K. Trends in extreme learning machines: a review. Neural Networks. 2015; 61:32-48. DOI: https://doi.org/10.1016/j.neunet.2014.10.001
Madić M, Markovic D, Radovanovic M. Comparison of meta-heuristic algorithms for solving machining optimization problems. Facta Universitatis-Series: Mechanical Engineering. 2013; 11(1):29-44.
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. 1995; IV:1942-1948. Doi:10.1109/ ICNN.1995.488968. Top of Form