A Review on Carbon Fiber Reinforced Metal Matrix Composites
DOI:
https://doi.org/10.18311/jmmf/2024/44015Keywords:
Aluminum, Carbon Fibers, Dispersion, Mechanical Properties, Metal Matrix Composites, StrengtheningAbstract
The manufacturing sector perpetually seeks high-quality materials capable of meeting the requirements for enhanced mechanical properties, thereby enabling their widespread application across various industries. Integrating Carbon Fibers (CFs) into metal matrices has demonstrated significant efficacy in augmenting the comprehensive attributes of the resultant composites. This comprehensive review focuses on the latest advancements and techniques involving the utilization of carbon fibers in conjunction with metal matrix material, aimed at augmenting a spectrum of mechanical attributes. Various methods used to synthesize carbon fiber reinforced metal composites have been discussed and summarized. Liquid metallurgy technique is playing important role in the fabrication of the carbon fiber reinforced metal composites.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-06-13
Published 2024-07-22
References
Hossain S, Rahman MDM, Chawla D, Kumar A, Seth PP, Gupta P, et al. Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Mat Today: Proc 21. 2020:1458-61. https://doi.org/10.1016/j.matpr.2019.10.089 DOI: https://doi.org/10.1016/j.matpr.2019.10.089
Bansal SA, Singh AP, Kumar S. Reinforcing graphene oxide nanoparticles to enhance viscoelastic performance of epoxy nanocomposites. J Nanosci Nanotech. 2019; 19(7):4000-6. https://doi.org/10.1166/jnn.2019.16336 PMid:30764961 DOI: https://doi.org/10.1166/jnn.2019.16336
Bansal, SA, Singh AP, Kumar S. High strain rate behavior of epoxy graphene oxide nanocomposites. Int J App Mech. 2018; 10(07):1850072. https://doi.org/10.1142/S1758825118500722 DOI: https://doi.org/10.1142/S1758825118500722
Bansal SA, Singh AP, Kumar S. Turning of particulate metal matrix composites-review and discussion. Proc Inst Mech Eng, Part B: J Eng Manufact. 2006; 220(7):1189-204. https://doi.org/10.1243/09544054JEM304 DOI: https://doi.org/10.1243/09544054JEM304
Saxena A, Singh N, Kumar D, Gupta P. Effect of ceramic reinforcement on the properties of metal matrix nanocomposites. Mat Today: Proc. 2017; 4(4):5561-70. https://doi.org/10.1016/j.matpr.2017.06.013 DOI: https://doi.org/10.1016/j.matpr.2017.06.013
Jamwal A, Prakash P, Kumar D, Singh N. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC-graphite hybrid composites. J Comp Mat. 2019; 53(18):2545-53. https://doi.org/10.1177/0021998319832961 DOI: https://doi.org/10.1177/0021998319832961
Bakshi, SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites-a review. Internat Mat Rev. 2010; 55(1):41-64. https://doi.org/10.1179/095066009X12572530170543 DOI: https://doi.org/10.1179/095066009X12572530170543
Bains PS, Sidhu SS, Payal HS. Fabrication and machining of metal matrix composites: A review. Mat Manufact Proc. 2016; 31(5):553-73. https://doi.org/10.1080/10426914.2015.1025976 DOI: https://doi.org/10.1080/10426914.2015.1025976
Surappa MK. Aluminium matrix composites: Challenges and opportunities. Sadh. 2003; 28:319-34. https://doi.org/10.1007/BF02717141 DOI: https://doi.org/10.1007/BF02717141
Singh K, Bansal SA, Kumar S. Graphene oxide (GO)/ Copper doped hematite (α-Fe2O3) nanoparticles for organic pollutants degradation applications at room temperature and neutral pH. Mat Res Exp. 2019; 6(11):115026. https://doi.org/10.1088/2053-1591/ab4459 DOI: https://doi.org/10.1088/2053-1591/ab4459
Waku Y, Nagasawa T. Future trends and recent developments of fabrication technology for advanced metal matrix composites. Mat Manufact Proc. 1994; 9(5):937-63. https://doi.org/10.1080/10426919408934962 DOI: https://doi.org/10.1080/10426919408934962
Walia, AS, Srivastava V, Jain V, Bansal SA. Effect of Tic reinforcement in the copper tool on roundness during EDM process. Adv Mat Sci Eng: Select Proc ICFMMP 2019. Springer Singapore; 2020. https://doi.org/10.1007/978-981-15-4059-2_10 DOI: https://doi.org/10.1007/978-981-15-4059-2_10
Chawla KK, Chawla KK. Metal matrix composites. New York; Springer; 1998. https://doi.org/10.1007/978-1-4757-2966-5_6 DOI: https://doi.org/10.1007/978-1-4757-2966-5_6
Boppana SB, Dayanand S. Development of AlB2 particles using inorganic halide salts and mechanical characterization of AlB2 reinforced AA6061 MMC’s. Mat Today: Proc. 2020; 27:595-602. https://doi.org/10.1016/j.matpr.2019.12.068 DOI: https://doi.org/10.1016/j.matpr.2019.12.068
Khanna V, Kumar V, Bansal SA. Aluminium-carbon fiber metal matrix composites: A review. IOP Conf Series: Mat Sci Eng. 2021; 1033(1). https://doi.org/10.1088/1757-899X/1033/1/012057 DOI: https://doi.org/10.1088/1757-899X/1033/1/012057
Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J Mat Sci Tech. 2019; 35(2):270-84. https://doi.org/10.1016/j.jmst.2018.09.004 DOI: https://doi.org/10.1016/j.jmst.2018.09.004
Kumar A, Arafath MY, Gupta P, Kumar D, Hussain CM, Jamwal A. Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite. Mat Today: Proc. 2020; 21:1417-20. https://doi.org/10.1016/j.matpr.2019.08.186 DOI: https://doi.org/10.1016/j.matpr.2019.08.186
Torralba JM, da Costa CE, Velasco F. P/M aluminum matrix composites: An overview. J Mat Proc Tech. 2003; 133(1-2):203-6. https://doi.org/10.1016/S0924-0136(02)00234-0 DOI: https://doi.org/10.1016/S0924-0136(02)00234-0
Boppana SB, Dayanand S, Kumar MRA, Kumar V, Aravinda T. Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites. J Mat Res Tech. 2020; 9(4):7354-62. https://doi.org/10.1016/j.jmrt.2020.05.013 DOI: https://doi.org/10.1016/j.jmrt.2020.05.013
Dayanand S, Babu BS. A review on synthesis of AlB2 reinforced aluminum matrix composites. IOP Conf Series: Mat Sci Eng. 2020; 810(1). https://doi.org/10.1088/1757-899X/810/1/012038 DOI: https://doi.org/10.1088/1757-899X/810/1/012038
Prasad SK, Dayanand S, Rajesh M, Nagaral M, Auradi V, Selvaraj R. Preparation and mechanical characterization of TiC particles reinforced Al7075 alloy composites. Adv Mat Sci Eng. 2022. https://doi.org/10.1155/2022/7105189 DOI: https://doi.org/10.1155/2022/7105189
Boppana SB, Dayanand S, Ramesh S, Auradi V. Effect of reaction holding time on synthesis and characterization of AlB2 reinforced Al6061 metal matrix composites. J Bio Tribo-Corr. 2020; 6:1-10. https://doi.org/10.1007/s40735-020-00385-4 DOI: https://doi.org/10.1007/s40735-020-00385-4
Mileiko S. Carbon-fibre/metal-matrix composites: A review. J Comp Sci. 2022; 6(10):297. https://doi.org/10.3390/jcs6100297 DOI: https://doi.org/10.3390/jcs6100297
Sandhanshiv RD, Patel DM. Synthesis and characterization of Novel nickel coated carbon fibre rod reinforced aluminium metal matrix composite material for using in automobile application. Adv Eng Forum. 2022; 46. https://doi.org/10.4028/p-ik37iv DOI: https://doi.org/10.4028/p-ik37iv
Moghadam AD, Schultz BF, Ferguson JB, Omarani E, Rohatgi PK, Gupta N. Functional metal matrix composites: Self-lubricating, self-healing, and nanocomposites-an outlook. JOM. 2014; 66:872-81. https://doi.org/10.1007/s11837-014-0948-5 DOI: https://doi.org/10.1007/s11837-014-0948-5
Santos, MC, Machado AR, Sales WF, Barrozo MAS, Ezugwu EO. Machining of aluminum alloys: A review. Int J Adv Manufact Tech. 2016; 86:3067-30. https://doi.org/10.1007/s00170-016-8431-9 DOI: https://doi.org/10.1007/s00170-016-8431-9
Casati R, Vedani M. Metal matrix composites reinforced by nano-particles-a review. Metals. 2014; 4(1):65-83. https://doi.org/10.3390/met4010065 DOI: https://doi.org/10.3390/met4010065
Ramnath, BV, Elanchezhian C, Annamalai RM, Aravind S, Atreya TSA, Vignesh V, et al. Aluminium metal matrix composites - A review. Rev Adv Mater Sci. 2014; 38(5):55-60.
Hemanth J. Development and property evaluation of aluminum alloy reinforced with Nano-ZrO2 Metal Matrix Composites (NMMCs). Mat Sci Eng A. 2009; 507(1-2):110-13. https://doi.org/10.1016/j.msea.2008.11.039 DOI: https://doi.org/10.1016/j.msea.2008.11.039
Bansal, SA, Singh AP, Kumar S. 2D materials: Graphene and others. AIP Conf Proc. 2016; 1728(1): 020459. https://doi.org/10.1063/1.4946510 DOI: https://doi.org/10.1063/1.4946510
Akbari MK, Baharvandi HR, Shirvanimoghaddam K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mat Design (1980-2015). 2015; 66( Part A):150-61. https://doi.org/10.1016/j.matdes.2014.10.048 DOI: https://doi.org/10.1016/j.matdes.2014.10.048
Muley AV, Aravindan S, Singh IP. Nano and hybrid aluminum based metal matrix composites: An overview. Manufact Rev. 2015; 2:15. https://doi.org/10.1051/mfreview/2015018 DOI: https://doi.org/10.1051/mfreview/2015018
Ramesh CS, Adarsha H, Pramod S, Khan Z. Tribological characteristics of innovative Al6061-carbon fiber rod metal matrix composites. Mat Design. 2013; 50:597-605. https://doi.org/10.1016/j.matdes.2013.03.031 DOI: https://doi.org/10.1016/j.matdes.2013.03.031
Lalet G, Kurita H, Heintz J-M, Lacombe G, Kawasaki A, Silvain J-F. Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond. J Mat Sci. 2014; 49:397-402. https://doi.org/10.1007/s10853-013-7717-7 DOI: https://doi.org/10.1007/s10853-013-7717-7
Yang LW, Dong Y, Wang RJ. Wear and mechanical properties of short carbon fiber reinforced copper matrix composites. Key Eng Mat. 2011; 474:1605-10. https://doi.org/10.4028/www.scientific.net/KEM.474-476.1605 DOI: https://doi.org/10.4028/www.scientific.net/KEM.474-476.1605
Miranda AT, Bolzoni L, Barekar N, Huang Y, Shin J, Ko S-H, McKay BJ. Processing, structure and thermal conductivity correlation in carbon fiber reinforced aluminum metal matrix composites. Mat Design. 2018; 156:329-39. https://doi.org/10.1016/j.matdes.2018.06.059 DOI: https://doi.org/10.1016/j.matdes.2018.06.059
Liu L, Weiwei L, Yiping T, Bin S, Wenbin H. Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear. 2009; 266(7-8):733-8. https://doi.org/10.1016/j.wear.2008.08.009 DOI: https://doi.org/10.1016/j.wear.2008.08.009
Ramesh CS, Khan S, Khan ZA., Dry sliding-friction and wear behavior of hot-extruded Al6061/Si3N4/Cf hybrid metal matrix composite. J Mat Eng Perform. 2020; 29:4474-83. https://doi.org/10.1007/s11665-020-04940-5 DOI: https://doi.org/10.1007/s11665-020-04940-5
Figueiredo JL, Bernardo, Baker RTK, Hüttinger KJ. Carbon fibers filaments and composites. NATO Science Series E; 1990 DOI: https://doi.org/10.1007/978-94-015-6847-0
Chung D. Carbon fiber composites. Elsevier; 2012.
Manocha LM. Carbon fibers encyclopedia of materials. Sci Technol. 2001:906-16. https://doi.org/10.1016/B0-08-043152-6/00174-1 DOI: https://doi.org/10.1016/B0-08-043152-6/00174-1
Chand S. Review carbon fibers for composites. J Mat Sci. 2000; 35:1303-13. https://doi.org/10.1023/A:1004780301489 DOI: https://doi.org/10.1023/A:1004780301489
Fitzer E. Pan-based carbon fibers-present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon. 1989; 27(5):621-45. https://doi.org/10.1016/0008-6223(89)90197-8 DOI: https://doi.org/10.1016/0008-6223(89)90197-8
Frank E. Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: Precursor systems, processing, structure, and properties. Angew Chem Int Ed. 2014; 53(21):5262-98. https://doi.org/10.1002/anie.201306129 PMid:24668878 DOI: https://doi.org/10.1002/anie.201306129
Badii K, Church JS, Golkarnarenji G, Naebe M, Khayyam H. Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model. Polym Degrad Stab. 2016; 131:53-61. https://doi.org/10.1016/j.polymdegradstab.2016.06.019 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.06.019
Meng F, McKechnie J, Pickering SJ. An assessment of financial viability of recycled carbon fiber in automotive applications. Comp Part A: App Sci Manuf. 2018; 109:207-20. https://doi.org/10.1016/j.compositesa.2018.03.011 DOI: https://doi.org/10.1016/j.compositesa.2018.03.011
Peebles LH. Carbon fibers: Formation, structure, and properties. CRC Press; 2018. https://doi.org/10.1201/9781351070423 DOI: https://doi.org/10.1201/9781351070423
Meng F, Mckechnie J, Pickering SJ. Towards a circular economy for end-of-life carbon fiber composite materials via fluidised bed process. Proc 21st Int Conf Comp Mat, China: Xi’an; 2017.
Inagaki M. New carbons-control of structure and functions. Elsevier; 2000.
Pramanik A, Basak AK, Dong Y, Sarker PK, Uddin MS, Littlefair G, et al. Joining of Carbon Fiber Reinforced Polymer (CFRP) composites and aluminum alloys - A review. Comp Part A: App Sci Manufact. 2017; 101:1-29. https://doi.org/10.1016/j.compositesa.2017.06.007 DOI: https://doi.org/10.1016/j.compositesa.2017.06.007
Morgan P. Carbon fibers and their composites. CRC Press; 2005. https://doi.org/10.1201/9781420028744 DOI: https://doi.org/10.1201/9781420028744
Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mat Sci Eng: R: Reports. 2013; 74(10):281-350. https://doi.org/10.1016/j.mser.2013.08.001 DOI: https://doi.org/10.1016/j.mser.2013.08.001
Calestani D, Villani M, Culiolo M, Delmonte D, Coppedè N, Zappettini A. Smart composites materials: A new idea to add gas-sensing properties to commercial carbon-fibers by functionalization with ZnO nanowires. Sens Actuat B: Chem. 2017; 245:166-70. https://doi.org/10.1016/j.snb.2017.01.109 DOI: https://doi.org/10.1016/j.snb.2017.01.109
Soutis C. Fibre reinforced composites in aircraft construction. Prog Aerospace Sci. 2005; 41(2):143-51. https://doi.org/10.1016/j.paerosci.2005.02.004 DOI: https://doi.org/10.1016/j.paerosci.2005.02.004
Kaur J, Millington K, Smith S. Producing high‐quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review. J Appl Poly Sci. 2016; 133(38). https://doi.org/10.1002/app.43963 DOI: https://doi.org/10.1002/app.43963
Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: Precursors, manufacturing, and properties. Macromolecul Mat Eng. 2012; 297(6):493-501. https://doi.org/10.1002/mame.201100406 DOI: https://doi.org/10.1002/mame.201100406
Wang C, Ji X, Roy A, Silberschmidt V, Chen Z. Shear strength and fracture toughness of carbon fiber/epoxy interface: Effect of surface treatment. Mat Design. 2015; 85:800-7. https://doi.org/10.1016/j.matdes.2015.07.104 DOI: https://doi.org/10.1016/j.matdes.2015.07.104
Hall I, Manrique F. Surface treatment of carbon fibers for aluminum alloy matrix composites. Scrip Metall Mat. 1995; 33(12):2037-43. https://doi.org/10.1016/0956-716X(95)00443-Y DOI: https://doi.org/10.1016/0956-716X(95)00443-Y
Pamula E, Rouxhet PG. Bulk and surface chemical functionalities of Type III PAN-based carbon fibres. Carbon. 2003; 41(10):1905-15.https://doi.org/10.1016/S0008-6223(03)00177-5 DOI: https://doi.org/10.1016/S0008-6223(03)00177-5
Rahman MA, Ismail AF, Mustafa A. The effect of residence time on the physical characteristics of PAN-based fibers produced using a solvent-free coagulation process. Mat Sci Eng: A. 2007; 448(1-2):275-80. https://doi.org/10.1016/j.msea.2006.10.042 DOI: https://doi.org/10.1016/j.msea.2006.10.042
Zhu Z, Kuang X, Carotenuto G, Nicolais L. Fabrication and properties of carbon fiber-reinforced copper composite by controlled three-step electrodeposition. J Mat Sci. 1997; 32:1061-7. DOI: https://doi.org/10.1023/A:1018542809294
Urena A, Rams J, Escalera MD, Sánchez M. Effect of copper electroless coatings on the interaction between a molten Al-Si-Mg alloy and coated short carbon fibres. Comp Part A: Appl Sci Manufact. 2007; 38(8):1947-56. https://doi.org/10.1016/j.compositesa.2007.02.005 DOI: https://doi.org/10.1016/j.compositesa.2007.02.005
Silvain JF, Vincent C, Heintz JM, Chandra N. Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications. Comp Sci Tech. 2009; 69(14):2474-84. https://doi.org/10.1016/j.compscitech.2009.06.023 DOI: https://doi.org/10.1016/j.compscitech.2009.06.023
Even C, Arvieu C, Quenisset J-M. Powder route processing of carbon fibres reinforced titanium matrix composites. Comp Sci Tech. 2008; 68(6):1273-81. https://doi.org/10.1016/j.compscitech.2007.12.014 DOI: https://doi.org/10.1016/j.compscitech.2007.12.014
Cao X, Shi Q, Liu D, Feng Z, Liu Q, Chen G. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors. Comp Part B: Eng. 2018; 139:97-105. https://doi.org/10.1016/j.compositesb.2017.12.001 DOI: https://doi.org/10.1016/j.compositesb.2017.12.001
Yang Q, Liu J, Li S, Wang F, Wul T. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite. Mat Design. 2014; 57:442-8. https://doi.org/10.1016/j.matdes.2013.12.064 DOI: https://doi.org/10.1016/j.matdes.2013.12.064
Prieto R, Molina JM, Narciso J, Louis E. Fabrication and properties of graphite flakes/metal composites for thermal management applications. Script Materia. 2008; 59(1):11-14. https://doi.org/10.1016/j.scriptamat.2008.02.026 DOI: https://doi.org/10.1016/j.scriptamat.2008.02.026
Lv S, Li JS, Li SF, Kang N, Chen B. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers. J Alloys Comp. 2021; 877:160313. https://doi.org/10.1016/j.jallcom.2021.160313 DOI: https://doi.org/10.1016/j.jallcom.2021.160313
Joshi TV, Mohanty A. Effect of short carbon fiber/SiC on tribological properties of aluminium matrix hybrid composites. IOP SciNotes. 2021; 2(3):035205. https://doi.org/10.1088/2633-1357/ac17c7 DOI: https://doi.org/10.1088/2633-1357/ac17c7
Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev. 2012; 52(3):234-58. https://doi.org/10.1080/15583724.2012.705410 DOI: https://doi.org/10.1080/15583724.2012.705410
Hufenbach W, Andrich M, Langkamp A, Czulak A. Fabrication technology and material characterization of carbon fibre reinforced magnesium. J Mater Process Technol. 2006; 175(1-3):218-24. https://doi.org/10.1016/j.jmatprotec.2005.04.023 DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.023
Arab SM, Karimi S, Jahromi SAJ, Javadpour S, Zebarjad SM. Fabrication of novel fiber reinforced aluminum composites by friction stir processing. Mater Sci Eng: A. 2015; 632:50-7. https://doi.org/10.1016/j.msea.2015.02.032 DOI: https://doi.org/10.1016/j.msea.2015.02.032
Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T, Kieback B. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scr Mater. 2008; 58(4):263-6. https://doi.org/10.1016/j.scriptamat.2007.10.011 DOI: https://doi.org/10.1016/j.scriptamat.2007.10.011
Silvain JF, Veillère A, Lu Y. Copper-carbon and aluminum-carbon composites fabricated by powder metallurgy processes. J Phy: Conf Series. 2014; 525:012015. https://doi.org/10.1088/1742-6596/525/1/012015 DOI: https://doi.org/10.1088/1742-6596/525/1/012015
Schubert T, Weißgärber T, Kieback B. Fabrication and properties of copper/carbon composites for thermal management applications. Adv Mat Res. 2008; 59:169-72. https://doi.org/10.4028/www.scientific.net/AMR.59.169 DOI: https://doi.org/10.4028/www.scientific.net/AMR.59.169
Veillère A, Heintz J, Chandra N, Douin J, Lahaye M, Grégory Lalet, et al. Influence of the interface structure on the thermo-mechanical properties of Cu–X (X=Cr or B)/carbon fiber composites. Mat Res Bull. 2012; 47(2):375-80. https://doi.org/10.1016/j.materresbull.2011.11.004 DOI: https://doi.org/10.1016/j.materresbull.2011.11.004
Jun Z, Jincheng X, Wei H, Long X, Deng Xiaoyan, Sen W, et al. Wear performance of the lead free tin bronze matrix composite reinforced by short carbon fibers. Appl Sur Sci. 2009; 255(13-14):6647-51. https://doi.org/10.1016/j.apsusc.2009.02.063
Mathias JD, Geffroy PM, Silvain JF. Architectural optimization for microelectronic packaging. Appl Therm Eng. 2009; 29(11-12):2391-5. https://doi.org/10.1016/j.applthermaleng.2008.12.037 DOI: https://doi.org/10.1016/j.applthermaleng.2008.12.037
Reitz V, Meinhard D, Ruck S, Riegel H, Knoblauch V. A comparison of IR- and UV-laser pretreatment to increase the bonding strength of adhesively joined aluminum/CFRP components. Comp Part A: Appl Sci Manuf. 2017; 96:18-27. https://doi.org/10.1016/j.compositesa.2017.02.014 DOI: https://doi.org/10.1016/j.compositesa.2017.02.014
Aravinda, Niranjan HB, Bopanna SB, Ramesh S, Dayanand S. Solid state diffusion bonding of Al2024 sheets. J Mines Met Fuels. 2021:455-8.
Hajjari E, Divandari M, Arabi H. Effect of applied pressure and nickel coating on microstructural development in continuous carbon fiber-reinforced aluminum composites fabricated by squeeze casting. Mater Manuf Process. 2011; 26(4):599-603. https://doi.org/10.1080/10426910903447311 DOI: https://doi.org/10.1080/10426910903447311
Lim JY, Oh SI, Kim YC, Jee KK, Sung YM, Han JH. Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Mater Sci Eng: A. 2012; 556:337-42. https://doi.org/10.1016/j.msea.2012.06.096 DOI: https://doi.org/10.1016/j.msea.2012.06.096
Naji H, Zebarjad SM, Sajjadi SA. The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites. Mater Sci Eng: A. 2008; 486(1-2):413-20.https://doi.org/10.1016/j.msea.2007.09.030 DOI: https://doi.org/10.1016/j.msea.2007.09.030
Ramesh CS, Prasad TB. Tribological friction and wear behaviour of graphite-carbon short fiber reinforced Al-17Si alloy hybrid composites. ASME 2008 Int Mech Eng Cong Expo. 2008 Oct 31-Nov 6. USA: Boston, Massachusetts; 2009. p. 593-6. https://doi.org/10.1115/IMECE2008-67113 PMid:18762690 DOI: https://doi.org/10.1115/IMECE2008-67113
Oroumei A, Fox B, Naebe M. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight Organosolv Lignin. ACS Sustain Chem Eng. 2015; 3(4):758-69. https://doi.org/10.1021/acssuschemeng.5b00097 DOI: https://doi.org/10.1021/acssuschemeng.5b00097
Pai BC, Pillai RM, Kelukutty VS, Srinivasa Rao H, Soman T, Pillai SGK, et al. Semi-solid slurry process for making short carbon fibre dispersed aluminium alloy matrix composites. J Mater Sci. 1994; 13(17):1278-80. https://doi.org/10.1007/BF00270960 DOI: https://doi.org/10.1007/BF00270960
Alhashmy HA, Nganbe M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater Des. 2015; 67:154–8. https://doi.org/10.1016/j.matdes.2014.11.034
Kaczmar JW, Naplocha K, Morgiel J. Microstructure and strength of Al2O3 and carbon fiber reinforced 2024 aluminum alloy composites. J Mater Eng Perform. 2014; 23(8):2801-8. https://doi.org/10.1007/s11665-014-1036-2 DOI: https://doi.org/10.1007/s11665-014-1036-2
Rodríguez-Guerrero A, Sánchez SA, Narciso J, Louis E, Rodríguez-Reinoso F. Pressure infiltration of Al–12wt.% Si–X (X=Cu, Ti, Mg) alloys into graphite particle preforms. Acta Mater. 2006; 54(7):1821-31. https://doi.org/10.1016/j.actamat.2005.11.041 DOI: https://doi.org/10.1016/j.actamat.2005.11.041
Lee M, Choi Y, Sugio K, Matsugi K, Sasaki G. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process. Compos Sci Technol. 2014; 97:1-5. https://doi.org/10.1016/j.compscitech.2014.03.022 DOI: https://doi.org/10.1016/j.compscitech.2014.03.022
Zhang Y, Yan L, Miao M, Wang Q, Wu G. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites. Mater Des. 2015; 86:872-7. https://doi.org/10.1016/j.matdes.2015.08.015 DOI: https://doi.org/10.1016/j.matdes.2015.08.015
Liu J, Zheng Z, Wang J, Wu Y, Tang W, Lü J. Pressureless infiltration of liquid aluminum alloy into SiC preforms to form near-net-shape SiC/Al composites. J Alloys Compd. 2008; 465(1-2):239-43. https://doi.org/10.1016/j.jallcom.2007.10.055 DOI: https://doi.org/10.1016/j.jallcom.2007.10.055
Tsakadze ZL, Levchenko I, Ostrikov K, Xu S. Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon. 2007; 45(10):2022-30. https://doi.org/10.1016/j.carbon.2007.05.030 DOI: https://doi.org/10.1016/j.carbon.2007.05.030
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005; 9(6):674-9. https://doi.org/10.1016/j.cbpa.2005.10.005 PMid:16233988 DOI: https://doi.org/10.1016/j.cbpa.2005.10.005
Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: A review on structure and their interaction with proteins. J Chem. 2013; 2013:1-18. https://doi.org/10.1155/2013/676815 DOI: https://doi.org/10.1155/2013/676815
Qi X, Qin C, Zhong W, Au C, Ye X, Du Y. Large-scale synthesis of carbon nanomaterials by catalytic chemical vapor deposition: A review of the effects of synthesis parameters and magnetic properties. Materials. 2010; 3(8):4142-74.. https://doi.org/10.3390/ma3084142 PMid:28883324 PMCid:PMC5445830 DOI: https://doi.org/10.3390/ma3084142
Yoshida M, et al. Studies on ion-plating process for making carbon fiber reinforced aluminum and properties of the composites. Proc 24th National SAMPE Symp. 1979; 24.
Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T. Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloys Compd. 2016; 666:366-71. https://doi.org/10.1016/j.jallcom.2016.01.118 DOI: https://doi.org/10.1016/j.jallcom.2016.01.118
Ghasali E, Pakseresht A, Safari-kooshali F, Ebadzadeh T. Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering. Mater Sci Eng: A. 2015; 627:27-30. https://doi.org/10.1016/j.msea.2014.12.096 DOI: https://doi.org/10.1016/j.msea.2014.12.096
Ma K, Wang BC, Chen P, Zhou X. Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites. 2011; 257(9):3824-30. Applied Surface Science. 2011; 257(9):3824-30. https://doi.org/10.1016/j.apsusc.2010.12.074 DOI: https://doi.org/10.1016/j.apsusc.2010.12.074
Soutis C, Turkmen D. Influence of shear properties and fibre imperfections on the compressive behaviour of GFRP laminates. Appl Compos Mater. 1996; 2(6):327-42. https://doi.org/10.1007/BF00564572 DOI: https://doi.org/10.1007/BF00564572
Nagatsuka K, Yoshida S, Tsuchiya A, Nakata K. Direct joining of carbon-fiber–reinforced plastic to an aluminum alloy using friction lap joining. Compos. B Eng. 2015; 73:82-8. https://doi.org/10.1016/j.compositesb.2014.12.029 DOI: https://doi.org/10.1016/j.compositesb.2014.12.029
Tiwari S, Bijwe J. Surface treatment of carbon fibers - A review. Proc Technol. 2014; 14:505-12. https://doi.org/10.1016/j.protcy.2014.08.064 DOI: https://doi.org/10.1016/j.protcy.2014.08.064
Huang X. Fabrication and properties of carbon fibers. Materials. 2009; 2(4):2369-403. https://doi.org/10.3390/ma2042369 PMCid:PMC5513585 DOI: https://doi.org/10.3390/ma2042369
Deshpande M, Gondil R, Waikar R, Murty SVSN, Mahata TS. Processing of carbon fiber reinforced aluminium (7075) metal matrix composite. Int J Adv Chem Sci Appl. 2016; 5(2):6-14. DOI: https://doi.org/10.1016/j.matpr.2017.11.376
Alhashmy HA, Nganbe M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mat Design. 2015; 67:154-8. https://doi.org/10.1016/j.matdes.2014.11.034 DOI: https://doi.org/10.1016/j.matdes.2014.11.034
Xia L, Jia B, Zeng J, Xu J. Wear and mechanical properties of carbon fiber reinforced copper alloy composites. Mat Charact. 2009; 60(5):363-9. https://doi.org/10.1016/j.matchar.2008.10.008 DOI: https://doi.org/10.1016/j.matchar.2008.10.008
Shirvanimoghaddam K, Hamim SU, Akbari MK, Fakhrhoseini SM, Khayyam H, Pakseresht AH, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos Part A: Appl Sci Manuf. 2017; 92:70-96. https://doi.org/10.1016/j.compositesa.2016.10.032 DOI: https://doi.org/10.1016/j.compositesa.2016.10.032
Esteves JV, Goushegir SM, dos Santos JF, Canto LB, Hage E, Amancio-Filho ST. Friction spot joining of aluminum AA6181-T4 and carbon fiber-reinforced poly (phenylene sulfide): Effects of process parameters on the microstructure and mechanical strength. Mater Des. 2015; 66:437-45. https://doi.org/10.1016/j.matdes.2014.06.070 DOI: https://doi.org/10.1016/j.matdes.2014.06.070
Dong S, Yuan H, Cheng X, Zhao X, Yang M, Fan Y, et al. Improved friction and wear properties of Al6061-matrix composites reinforced by Cu-Ni double-layer-coated carbon fibers. Metals. 2020; 10(11):1542. https://doi.org/10.3390/met10111542 DOI: https://doi.org/10.3390/met10111542
Suryanarayana RC, Hiriyannaiah A, Gnanamurthy PR, Bharadwaj A. Air jet erosion wear behaviour of Al6061-Carbon fibre rod composites. Tribol Online. 2015; 10(1):27-34. https://doi.org/10.2474/trol.10.27 DOI: https://doi.org/10.2474/trol.10.27
Tang Y, Liu L, Li W, Shen B, Hu W. Interface characteristics and mechanical properties of short carbon fibers/Al composites with different coatings. Appl Surf Sci. 2009; 255(8):4393-400. https://doi.org/10.1016/j.apsusc.2008.10.124 DOI: https://doi.org/10.1016/j.apsusc.2008.10.124
Jun Z, Xu Jincheng, Wei H, Long X, Deng Xiaoyan, Sen W, et al. Wear performance of the lead free tin bronze matrix composite reinforced by short carbon fibers. Appl Surf Sci. 2009; 255(13-14):6647-51 https://doi.org/10.1016/j.apsusc.2009.02.063 DOI: https://doi.org/10.1016/j.apsusc.2009.02.063