Catechins and Theaflavins: An Overview on Therapeutic Application
DOI:
https://doi.org/10.18311/jnr/2022/30181Keywords:
Catechins, Flavonoids, Plants, Secondary Metabolites, TheaflavinsAbstract
Flavonoids are a sort of natural substance which are basically plant secondary metabolites having a polyphenolic structure present in a wide range of food products. Flavonoids have become a vital constituent in nutraceutical, pharmacological, therapeutic, and cosmetic fields. This is owing to their capability to regulate essential cellular enzyme activity along with anti-cancer, anti-oxidative, anti-mutagenic, and anti-inflammatory effects. Through the revelation of a minimal cardiovascular death rate and the deterrence of CHD, research on flavonoids has gotten a boost. The functional mechanisms of flavonoids are still not completely known. Molecular docking and bioinformatics information are also been used to forecast potential flavonoid functions. Flavonoids are divided into several categories. Catechins and Theaflavins (TF’s) are two types of flavonoids that have been discussed in this review. ROS scavenging property of tea catechins and polyphenols have been demonstrated in vitro, and they may also serve as indirect antioxidants via their influence on transcription features and enzyme actions. There are a number of antioxidant polyphenols called collectively as “theaflavins” that are produced during the enzymatic oxidation (sometimes referred to mistakenly as “fermentation”) of black tea leaves by flavan-3-ol condensation Theaflavin-3-gallate, theaflavin-3’-gallate, and theaflavin-3-3’-digallate are the major theaflavins.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2022-06-08
Published 2022-07-30
References
Banjarnahor SD, Artanti N. Antioxidant properties of flavonoids. Med J Indonesia. 2014; 23(4):239-44. https://doi. org/10.13181/mji.v23i4.1015 DOI: https://doi.org/10.13181/mji.v23i4.1015
Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem. 2009; 113(4):859-71. https://doi.org/10.1016/j.foodchem. 2008.09.001 DOI: https://doi.org/10.1016/j.foodchem.2008.09.001
Lee YK, Yuk DY, Lee JW, Lee SY, Ha TY, Oh KW, et al. (?)-Epigallocatechin-3-gallate prevents lipopolysaccharide- induced elevation of beta-amyloid generation and memory deficiency. Brain Res. 2009; 1250:164-74. https:/doi.org/10.1016/j.brainres.2008.10.012.PMid:18992719 DOI: https://doi.org/10.1016/j.brainres.2008.10.012
Metodiewa D, Kochman A, Karolczak S. Evidence for antiradical and antioxidant properties of four biologically active N, N?Diethylaminoethyl ethers of flavaone oximes: A comparison with natural polyphenolic flavonoid rutin action. Biochem Mol Biol Int. 1997; 41(5):1067-75. https://doi. org/10.1080/15216549700202141. PMid:9137839 DOI: https://doi.org/10.1080/15216549700202141
Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J Nat Prod. 1988; 51(2):345-8. https://doi. org/10.1021/np50056a030. PMid:3379415 DOI: https://doi.org/10.1021/np50056a030
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000; 6(4):909-19. https://doi.org/10.1016/S1097- 2765(05)00089-4 DOI: https://doi.org/10.1016/S1097-2765(05)00089-4
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002; 96(2-3):67-202. https://doi.org/10.1016/S0163-7258(02)00298-X DOI: https://doi.org/10.1016/S0163-7258(02)00298-X
Dewick PM. The shikimate pathway: aromatic amino acids and phenylpropanoids. Med Nat Prod. 2009; 137:86. https:/doi.org/10.1002/9780470742761.ch4
Griesbach R. Biochemistry and genetics of flower color. Plant Breed Rev. 2005; 25:89-114. https://doi. org/10.1002/9780470650301.ch4 DOI: https://doi.org/10.1002/9780470650301.ch4
Takahashi A, Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station. Biol Sci Space. 2004; 18:255-60. https://doi.org/10.2187/bss.18.255. PMid:15858393 DOI: https://doi.org/10.2187/bss.18.255
Samanta A, Das G, Das S. Roles of flavonoids in plants. Int J Pharm Sci Tech. 2011; 6:12-35.
Jorgensen R. Co-suppression, flower color patterns, and metastable gene expression states. Sci. 1995; 268:686- 91. https://doi.org/10.1126/science.268.5211.686. PMid:17832380 DOI: https://doi.org/10.1126/science.268.5211.686
Dixon R, Pasinetti G. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol. 2010; 154:453-7. https://doi.org/10.1104/pp.110.161430. PMid:20921162. PMCid:PMC2948995 DOI: https://doi.org/10.1104/pp.110.161430
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013. https://doi.org/10.1155/2013/162750. PMid:24470791. PMCid:PMC3891543 DOI: https://doi.org/10.1155/2013/162750
Panche A, Chandra S, Ad DI, Harke S. Alzheimer’s and current therapeutics: A review. Asian J Pharm Clin Res. 2015; 8(3):14-9.
Sen AK, Sen DB, Maheshwari RA. Extraction, Isolation, and Quantitative Determination of Flavonoids by HPLC. In Saikat Sen, Raja Chakraborty, editor. Herbal Medicine in India. Singapore. Springer Nature Singapore Pte Ltd.; 2020: pp. 303-36. https://doi.org/10.1007/978-981-13-7248-3_21 DOI: https://doi.org/10.1007/978-981-13-7248-3_21
Turner BL, Harborne JB. Plant chemosystematics. Academic Press; 1984.
Clifford AH, Cuppett SL. Review: Anthocyaninsnature, occurrence and dietary burden. J Sci Food Agric. 2000; 80:1063-72. https://doi.org/10.1002/(SICI)1097- 0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
Cook NC, Samman S. Review: Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996; 7:66-76. https://doi.org/10.1016/0955- 2863(95)00168-9 DOI: https://doi.org/10.1016/0955-2863(95)00168-9
Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1988; 56:317-33. https://doi.org/10.1111/j.1753-4887.1998. tb01670.x. PMid:9838798 DOI: https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
Aherne SA, Obrien NM. Dietary flavonols: chemistry, food content and metabolism. Nutr. 2002; 18:75-81. https://doi. org/10.1016/S0899-9007(01)00695-5 DOI: https://doi.org/10.1016/S0899-9007(01)00695-5
Peterson J, Dwyer J. Flavonoids: Dietary occurrence and biochemical activity. Nutr Res. 1998; 18:1995-2018. https:/doi.org/10.1016/S0271-5317(98)00169-9 DOI: https://doi.org/10.1016/S0271-5317(98)00169-9
Tsuchiya, H. Stereospecificity in membrane effects of catechins. Chem Biol Interact. 2001; 134:41-54. https://doi. org/10.1016/S0009-2797(00)00308-2 DOI: https://doi.org/10.1016/S0009-2797(00)00308-2
Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Mol. 2018; 23(4):965. https://doi.org/10.3390/molecules23040965. PMid:29677167. PMCid:PMC6017297 DOI: https://doi.org/10.3390/molecules23040965
Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol. 2020; 4(1):1. https://doi.org/10.1186/s41702-020-0057-8. PMCid:PMC7149075 DOI: https://doi.org/10.1186/s41702-020-0057-8
Isemura M. Catechin in human health and disease. Mol. 2019; 24:528. https://doi.org/10.3390/molecules24030528. PMid:30717121. PMCid:PMC6384718 DOI: https://doi.org/10.3390/molecules24030528
Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules. 2009; 10:1923-30. https://doi.org/10.1021/bm900325t. PMid:19413362 DOI: https://doi.org/10.1021/bm900325t
D’Urso G, Pizza C, Piacente S, Montoro P. Combination of LC-MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. J Pharm Biomed Anal. 2018; 150:233-40. https:/doi.org/10.1016/j.jpba.2017.12.005. PMid:29253779 DOI: https://doi.org/10.1016/j.jpba.2017.12.005
Nadim M, Auriol D, Lamerant-FayeL N, Lefèvre F, Dubanet L, Redziniak G, et al. Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model. Int J Cosmet Sci. 2014; 36:579-87. https://doi.org/10.1111ics.12159. PMid:25196711 DOI: https://doi.org/10.1111/ics.12159
Feng HL, Tian L, Chai WM, Chen XX, Shi Y, Gao Y-S, et al. Isolation and purification of condensed tannins from flamboyant tree and their antioxidant and antityrosinase activities. Appl Biochem Biotechnol. 2014; 173:179-92. https://doi.org/10.1007/s12010-014-0828-z. PMid:24671565 DOI: https://doi.org/10.1007/s12010-014-0828-z
Feng B, Fang Y, Wei SM. Effect and mechanism of epigallocatechin- 3-gallate (EGCG) against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts. J Cosmet Sci. 2013; 64(1):35-44.
Zhong Y, Shahidi F. Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. J Agric Food Chem. 2011; 59:6526-33. https://doi.org/10.1021/jf201050j. PMid:21526762 DOI: https://doi.org/10.1021/jf201050j
Shoko T, Maharaj VJ, Naidoo D, Tselanyane M, Nthambeleni R, Khorombi E, et al. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complement Altern Med. 2018; 18(1):1-4. https://doi.org/10.1186/s12906-018-2112- 1. PMid:29415712. PMCid:PMC5804067 DOI: https://doi.org/10.1186/s12906-018-2112-1
Lima EBC, de Sousa CNS, Vasconcelos GS, Meneses LN, YF e SP, Ximenes NC, et al. Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med. 2016; 70:510-21. https://doi.org/10.1007/s11418-016-0970-8. PMid:26857134 DOI: https://doi.org/10.1007/s11418-016-0970-8
Xie H, Li X, Ren Z, Qiu W, Chen J, Jiang Q, Chen B, Chen D. Antioxidant and cytoprotective effects of Tibetan tea and its phenolic components. Mol. 2018; 23(2):179. https:/doi.org/10.3390/molecules23020179. PMid:29364183. PMCid:PMC6017439 DOI: https://doi.org/10.3390/molecules23020179
Saeki K, Hayakawa S, Nakano S, Ito S, Oishi Y, Suzuki Y, Isemura M. In vitro and in silico studies of the molecular interactions of epigallocatechin-3-O-gallate (EGCG) with proteins that explain the health benefits of green tea. Mol. 2018; 23(6):1295. https://doi.org/10.3390/molecules23061295. PMid:29843451. PMCid:PMC6099932 DOI: https://doi.org/10.3390/molecules23061295
de Oliveira CA, Hensel A, Mello JCP, Pinha AB, Panizzon GP, Lechtenberg M, et al. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with gingipains. Fitoterapia. 2017; 118:87-93. https:/doi.org/10.1016/j.fitote.2017.03.002. PMid:28288871 DOI: https://doi.org/10.1016/j.fitote.2017.03.002
Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci. 2009; 14:69-72. https://doi.org/10.4265/bio.14.69. PMid:19579658 DOI: https://doi.org/10.4265/bio.14.69
Goyal A, Bhat M, Sharma M, Garg M, Khairwa A, Garg R. Effect of green tea mouth rinse on Streptococcus mutans in plaque and saliva in children: An in vivo study. J Indian Soc Pedod Prev Dent. 2017; 35:41-6. https://doi.org/10.4103/0970-4388.199227. PMid:28139481 DOI: https://doi.org/10.4103/0970-4388.199227
Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. Effects of tea catechins on Alzheimer’s disease: Recent updates and perspectives. Mol. 2018; 23(9):2357. https:/doi.org/10.3390/molecules23092357. PMid:30223480. PMCid:PMC6225145 DOI: https://doi.org/10.3390/molecules23092357
Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Mol. 2018; 23(6):1297. https:/doi.org/10.3390/molecules23061297. PMid:29843466. PMCid:PMC6099654 DOI: https://doi.org/10.3390/molecules23061297
Zhang W, Yang Y, Lv T, Fan Z, Xu Y, Yin J, et al. Sucrose esters improve the colloidal stability of nanoethosomal suspensions of (-)-epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater. 2016; 105:2416-25. https://doi. org/10.1002/jbm.b.33785. PMid:27618624 DOI: https://doi.org/10.1002/jbm.b.33785
Yoshino S, Mitoma T, Tsuruta K, Todo H, Sugibayashi K. Effect of emulsification on the skin permeation and UV protection of catechin. Pharm Dev Technol. 2013; 19:395- 400. https://doi.org/10.3109/10837450.2013.788512. PMid:23639253 DOI: https://doi.org/10.3109/10837450.2013.788512
Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, et al. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Mol. 2007; 12(8):1845-58. https://doi.org/10.3390/12081845. PMid:17960092. PMCid:PMC6149107 DOI: https://doi.org/10.3390/12081845
Martincigh BS, Ollengo MA. The Photostabilizing effect of grape seed extract on three common sunscreen absorbers. Photochem Photobiol. 2016; 92:870-84. https://doi. org/10.1111/php.12652. PMid:27759892 DOI: https://doi.org/10.1111/php.12652
Parisi OI, Puoci F, Iemma F, Curcio M, Cirillo G, Spizzirri UG, et al. Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone). Pharm Dev Technol. 2012; 18:1058-65. https://doi.org/10.3109/108374 50.2012.680595. PMid:22524466 DOI: https://doi.org/10.3109/10837450.2012.680595
Kim SS, Hyun CG, Choi YH, Lee NH. Tyrosinase inhibitory activities of the compounds isolated from Neolitsea aciculata (Blume) Koidz. J Enzyme Inhib Med Chem. 2012; 28:685-9. https://doi.org/10.3109/14756366.2012.670806. PMid:22468750 DOI: https://doi.org/10.3109/14756366.2012.670806
Kumar M, Chandel M, Kaur P, Pandit K, Kaur V, Kaur S, et al. Chemical composition and inhibitory effects of water extract of Henna leaves on reactive oxygen species, DNA scission and proliferation of cancer cells. Excli J. 2016; 15:842-57.
Cheng HY, Yang CM, Lin TC, Shieh DE, Lin CC. ent- Epiafzelechin-(4??8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. J Med Microbiol. 2006; 55(2):201-6. https://doi.org/10.1099jmm.0.46110-0. PMid:16434713 DOI: https://doi.org/10.1099/jmm.0.46110-0
Furushima D, Ide K, Yamada H. Effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies. Mol. 2018; 23. https:/doi.org/10.3390/molecules23071795. PMid:30037024. PMCid:PMC6100025 DOI: https://doi.org/10.3390/molecules23071795
Rothenberg DO, Zhou C, Zhang L. A Review on the Weight-Loss Effects of oxidized tea polyphenols. Mol. 2018; 23. https://doi.org/10.3390/molecules23051176. PMid:29758009. PMCid:PMC6099746 DOI: https://doi.org/10.3390/molecules23051176
Fatima M, Kesharwani RK, Misra K, Rizvi SI. Protective effect of theaflavin on erythrocytes subjected to in vitro oxidative stress. Bioche Res Int. 2013. https://doi. org/10.1155/2013/649759. PMid:24455262. PMCid: PMC3880739 DOI: https://doi.org/10.1155/2013/649759
Subramanian N, Venkatesh P, Ganguli S, Sinkar VP. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J Agric Food Chem. 1999; 47(7):2571- 8. https://doi.org/10.1021/jf981042y. PMid:10552528 DOI: https://doi.org/10.1021/jf981042y
Tanaka T, Mine C, Inoue K, Matsuda M, Kouno I. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin. J Agric Food Chem. 2002; 50(7):2142-8. https://doi.org/10.1021/jf011301a. PMid:11902970 DOI: https://doi.org/10.1021/jf011301a
Hodgson JM. Tea flavonoids and cardiovascular disease. Asia Pac J Clin Nutr. 2008; 17(1):288-90.
Gao Y, Yin J, Tu Y, Chen YC. Theaflavin-3, 3β-digallate suppresses human ovarian carcinoma OVCAR-3 cells by regulating the checkpoint kinase 2 and p27 kip1 pathways. Mol. 2019; 24(4):673. https://doi.org/10.3390molecules24040673. PMid:30769778. PMCid:PMC6412557 DOI: https://doi.org/10.3390/molecules24040673
Shah U, Patel S, Patel M, Jain N, Pandey N, Chauhan A, et al. In Vitro Cytotoxicity and Aromatase Inhibitory Activity of Flavonoids: Synthesis, Molecular Docking and In silico ADME Prediction. Anti-Cancer Agents Med Chem. 2022; 22(7):1370-85. https://doi.org/10.2174/187152062166 6210827104406 DOI: https://doi.org/10.2174/1871520621666210827104406
Gandhi K, Shah U, Patel S, Patel M, Patel S, Patel A, et al. Molecular modelling and ADMET predictions of flavonoids as prospective aromatase inhibitors. Ind J Chem. 2022;61(2):192-200.
Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene. 2000; 19(15):1924-32. https://doi.org/10.1038/sj.onc.1203511. PMid:10773882 DOI: https://doi.org/10.1038/sj.onc.1203511
Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinog. 1998; 19(4):611-6. https://doi.org/10.1093/carcin/19.4.611. PMid:9600345 DOI: https://doi.org/10.1093/carcin/19.4.611
Chen D, Daniel KG, Kuhn DJ, Kazi A, Bhuiyan M, Li L, et al. Green tea and tea polyphenols in cancer prevention. Front Biosci. 2004; 9:2618-31. https://doi.org/10.2741/1421. PMid:15358585 DOI: https://doi.org/10.2741/1421
Lu J, Ho CT, Ghai G, Chen KY. Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Cancer Res. 2000; 60(22):6465-71. PMid: 11103814.
Neil EJ, Termini D, Albano A, Tsiani E. Anticancer properties of theoflavins. Mol. 2021; 26:987. https://doi.org/10.3390molecules26040987. PMid:33668434. PMCid:PMC7917939 DOI: https://doi.org/10.3390/molecules26040987
Kundu T, Dey S, Roy M, Siddiqi M, Bhattacharya RK. Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin. Cancer Lett. 2005; 230(1):111-21. https://doi.org/10.1016/j.canlet.2004.12.035. PMid:16253767 DOI: https://doi.org/10.1016/j.canlet.2004.12.035
Tu YY, Tang AB, Watanabe N. The theaflavin monomers inhibit the cancer cells growth in vitro. Acta Biochim Biophys Sin. 2004; 36(7):508-12. https://doi.org/10.1093abbs/36.7.508. PMid:15248026 DOI: https://doi.org/10.1093/abbs/36.7.508
Hibasami H, Komiya T, Achiwa Y, Ohnishi K, Kojima T, Nakanishi K, et al. Black tea theaflavins induce programmed cell death in cultured human stomach cancer cells. Int J Mol Med. 1998; 1(4):725-32. https://doi.org/10.3892ijmm.1.4.725. PMid:9852288
Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015; 1(1):1-22. https://doi.org/10.1038nrdp.2015.80. PMid:27188459 DOI: https://doi.org/10.1038/nrdp.2015.80
Cai X, Fang C, Hayashi S, Hao S, Zhao M, Tsutsui H, Nishiguchi S, Sheng J. Pu-erh tea extract ameliorates highfat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice. J Gastroenterol. 2016; 51(8):819-29. https://doi. org/10.1007/s00535-015-1154-0. PMid:26794005 DOI: https://doi.org/10.1007/s00535-015-1154-0
Liu Z, Lin Y, Zhang S, Wang D, Liang Q, Luo G. Comparative proteomic analysis using 2DE?LC?MS/MS reveals the mechanism of Fuzhuan brick tea extract against hepatic fat accumulation in rats with nonalcoholic fatty liver disease. Electrophoresis. 2015; 36(17):2002-16. https://doi. org/10.1002/elps.201500076. PMid:26036873 DOI: https://doi.org/10.1002/elps.201500076
Yuan E, Duan X, Xiang L, Ren J, Lai X, Li Q, Sun L, Sun S. Aged oolong tea reduces high-fat diet-induced fat accumulation and dyslipidemia by regulating the AMPK/ACC signaling pathway. Nutr. 2018; 10(2):187. https://doi.org/10.3390nu10020187. PMid:29419789. PMCid:PMC5852763 DOI: https://doi.org/10.3390/nu10020187
Eguchi T, Kumagai C, Fujihara T, Takemasa T, Ozawa T, Numata O. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4. PloS one. 2013; 8(7). https://doi.org/10.1371/journal. pone.0069480. PMid:23922719. PMCid:PMC3724851 DOI: https://doi.org/10.1371/journal.pone.0069480
Yang CS, Zhang J. Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses, and toxicities. J Agric Food Chem. 2018; 67(19):5446-56. https://doi.org/10.1021/acs.jafc.8b05242. PMid:30541286 DOI: https://doi.org/10.1021/acs.jafc.8b05242
Shan Z, Nisar MF, Li M, Zhang C, Wan CC. Theaflavin chemistry and its health benefits. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6256618. PMid:34804369. PMCid:PMC8601833 DOI: https://doi.org/10.1155/2021/6256618
Pan S, Deng X, Sun S, Lai X, Sun L, Li Q, et al. Black tea affects obesity by reducing nutrient intake and activating AMP-activated protein kinase in mice. Mol Biol Rep. 2018; 45(5):689-97. https://doi.org/10.1007/s11033-018-4205-9. PMid:29923153 DOI: https://doi.org/10.1007/s11033-018-4205-9
Park B, Lee S, Lee B, Kim I, Baek N, Lee TH, et al. New ethanol extraction improves the anti-obesity effects of black tea. Arch Pharm Res. 2016; 39(3):310-20. https://doi. org/10.1007/s12272-015-0674-8. PMid:26604105 DOI: https://doi.org/10.1007/s12272-015-0674-8
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001. PMid:16978905 DOI: https://doi.org/10.1016/j.biocel.2006.07.001
Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001; 131(9):2248-51. https://doi.org/10.1093/jn/131.9.2248. PMid:11533262 DOI: https://doi.org/10.1093/jn/131.9.2248
Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C. The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators? FEBS Lett. 1996; 392(1):40-4. https://doi.org/10.1016/0014- 5793(96)00780-6 DOI: https://doi.org/10.1016/0014-5793(96)00780-6
Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J. Black tea theaflavins inhibit formation of toxic amyloid-? and β-synuclein fibrils. Biochem. 2011; 50(49):10624-36. https://doi.org/10.1021/bi2012383. PMid:22054421 DOI: https://doi.org/10.1021/bi2012383
Zhang J, Cai S, Li J, Xiong L, Tian L, Liu J, Huang J, Liu Z. Neuroprotective effects of theaflavins against oxidative stress-induced apoptosis in PC12 cells. Neurochem Res. 2016; 41(12):3364-72. https://doi.org/10.1007/s11064-016- 2069-8. PMid:27686660 DOI: https://doi.org/10.1007/s11064-016-2069-8
Anandhan A, Tamilselvam K, Radhiga T, Rao S, Essa MM, Manivasagam T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res. 2012; 1433:104-13. https://doi.org/10.1016/j. brainres.2011.11.021. PMid:22138428 DOI: https://doi.org/10.1016/j.brainres.2011.11.021
Zu M, Yang F, Zhou W, Liu A, Du G, Zheng L. In vitro antiinfluenza virus and anti-inflammatory activities of theaflavin derivatives. Antivir Res. 2012; 94(3):217-24. https://doi. org/10.1016/j.antiviral.2012.04.001. PMid:22521753 DOI: https://doi.org/10.1016/j.antiviral.2012.04.001
Cai F, Li CR, Wu JL, Chen JG, Liu C, Min Q, et al. Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediators Inflamm. 2006. https://doi.org/10.1155MI/2006/30490. PMid:17392572. PMCid:PMC1657077 DOI: https://doi.org/10.1155/MI/2006/30490
Lin YL, Tsai SH, Lin-Shiau SY, Ho CT, Lin JK. Theaflavin-3, 3β-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macrophages. Eur J Pharmacol. 1999; 367(2-3):379-88. https:/doi.org/10.1016/S0014-2999(98)00953-4 DOI: https://doi.org/10.1016/S0014-2999(98)00953-4
Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean ME, Hara Y, et al. Bioavailability of black tea theaflavins: absorption, metabolism, and colonic catabolism. J Agric Food Chem. 2017; 65(26):5365-74. https://doi. org/10.1021/acs.jafc.7b01707. PMid:28595385 DOI: https://doi.org/10.1021/acs.jafc.7b01707
Cueva C, Gil-Sánchez I, Ayuda-Durán B, González- Manzano S, González-Paramás AM, Santos-Buelga C, et al. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Mol. 2017; 22(1):99. https://doi.org/10.3390/molecules22010099. PMid:28067835. PMCid:PMC6155716 DOI: https://doi.org/10.3390/molecules22010099
Chen H, Parks TA, Chen X, Gillitt ND, Jobin C, Sang S. Structural identification of mouse fecal metabolites of theaflavin 3, 3β-digallate using liquid chromatography tandem mass spectrometry. J Chromatogr A. 2011; 1218(41):7297-306. https://doi.org/10.1016/j.chroma.2011.08.056. PMid:2190 6744. PMCid:PMC3376406 DOI: https://doi.org/10.1016/j.chroma.2011.08.056
Chen H, Hayek S, Rivera Guzman J, Gillitt ND, Ibrahim SA, Jobin C, et al. The microbiota is essential for the generation of black tea theaflavins-derived metabolites. PLoS One. 2012; 7(12). https://doi.org/10.1371/journal.pone.0051001. PMid:23227227. PMCid:PMC3515489 DOI: https://doi.org/10.1371/journal.pone.0051001
Chen H, Sang S. Biotransformation of tea polyphenols by gut microbiota. J Funct Foods. 2014; 7:26-42. https://doi. org/10.1016/j.jff.2014.01.013 DOI: https://doi.org/10.1016/j.jff.2014.01.013
Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, et al. Green tea polyphenols modify the gut microbiome in dbdb mice as Co?abundance groups correlating with the blood glucose lowering effect. Mol Nutr Food Res. 2019; 63(8). https://doi.org/10.1002/mnfr.201801064. PMid:30667580. PMCid:PMC6494111 DOI: https://doi.org/10.1002/mnfr.201801064
Liu Z, Bruins ME, Ni L, Vincken JP. Green and black tea phenolics: Bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. J Agric Food Chem. 2018; 66(32):8469-77. https://doi.org/10.1021/acs. jafc.8b02233. PMid:30020786 DOI: https://doi.org/10.1021/acs.jafc.8b02233
Liu Z, Chen Z, Guo H, He D, Zhao H, Wang Z, et al. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Func. 2016; 7(12):4869-79. https://doi.org/10.1039C6FO01439A. PMid:27812583 DOI: https://doi.org/10.1039/C6FO01439A
Liu Z, de Bruijn WJ, Bruins ME, Vincken JP. Microbial metabolism of theaflavin-3, 3β-digallate and its gut microbiota composition modulatory effects. J Agric Food Chem. 2020; 69(1):232-45. https://doi.org/10.1021/acs. jafc.0c06622. PMid:33347309. PMCid:PMC7809692 DOI: https://doi.org/10.1021/acs.jafc.0c06622
Hu X, Ping Z, Gan M, Tao Y, Wang L, Shi J, et al. Theaflavin-3, 3β-digallate represses osteoclastogenesis and prevents wear debris-induced osteolysis via suppression of ERK pathway. Acta Biomater. 2017; 48:479-88. https://doi.org/10.1016/j. actbio.2016.11.022. PMid:27838465 DOI: https://doi.org/10.1016/j.actbio.2016.11.022
Wu Y, Jin F, Wang Y, Li F, Wang L, Wang Q, et al. In vitro and in vivo anti-inflammatory effects of theaflavin-3, 3β-digallate on lipopolysaccharide-induced inflammation. Eur J Pharmacol. 2017; 794:52-60. https://doi.org/10.1016/j. ejphar.2016.11.027. PMid:27871911 DOI: https://doi.org/10.1016/j.ejphar.2016.11.027
Oka Y, Iwai S, Amano H, Irie Y, Yatomi K, Ryu K, et al. Tea polyphenols inhibit rat osteoclast formation and differentiation. J Pharmacol Sci. 2012; 118(1):55-64. https://doi. org/10.1254/jphs.11082FP DOI: https://doi.org/10.1254/jphs.11082FP
Myers G, Prince RL, Kerr DA, Devine A, Woodman RJ, Lewis JR, et al. Tea and flavonoid intake predict osteoporotic fracture risk in elderly Australian women: a prospective study. Am J Clin Nutr. 2015; 102(4):958-65. https://doi. org/10.3945/ajcn.115.109892. PMid:26269364 DOI: https://doi.org/10.3945/ajcn.115.109892
Teng H, Fang T, Lin Q, Song H, Liu B, Chen L. Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends Food Sci Tech. 2017; 66:153-65. https://doi. org/10.1016/j.tifs.2017.05.015 DOI: https://doi.org/10.1016/j.tifs.2017.05.015
Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr. 2002; 75(5):880-6. https://doi. org/10.1093/ajcn/75.5.880. PMid:11976162 DOI: https://doi.org/10.1093/ajcn/75.5.880
Vernarelli JA, Lambert JD. Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. Eur J Nutr. 2013; 52(3):1039-48. https://doi.org/10.1007/s00394-012-0410-9. PMid:22777108. PMCid:PMC3515715 DOI: https://doi.org/10.1007/s00394-012-0410-9
Stangl V, Dreger H, Stangl K, Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res. 2007; 73(2):348-58. https://doi.org/10.1016/j.cardiores. 2006.08.022. PMid:17020753 DOI: https://doi.org/10.1016/j.cardiores.2006.08.022
Vanden Hoek TL, Shao ZU, Li CH, Zak R, Schumacker PT, Becker LB. Reperfusion injury on cardiac myocytes after simulated ischemia. Am J Physiol Heart Circ Physiol. 1996; 270(4):1334-41. https://doi.org/10.1152ajpheart.1996.270.4.H1334. PMid:8967373 DOI: https://doi.org/10.1152/ajpheart.1996.270.4.H1334
Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol. 1998; 30(11):2281-9. https://doi. org/10.1006/jmcc.1998.0789. PMid:9925365 DOI: https://doi.org/10.1006/jmcc.1998.0789
Horwitz LD, Fennessey PV, Shikes RH, Kong Y. Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circ. 1994; 89(4):1792-801. https://doi.org/10.1161/01.CIR.89.4.1792. PMid:8149545 DOI: https://doi.org/10.1161/01.CIR.89.4.1792
Urquiaga IN, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res. 2000; 33(2):55-64. https://doi. org/10.4067/S0716-97602000000200004. PMid:15693271 DOI: https://doi.org/10.4067/S0716-97602000000200004
Yoshida H, Ishikawa T, Hosoai H, Suzukawa M, Ayaori M, Hisada T, et al. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem Pharmacol. 1999; 58(11):1695-703. https://doi.org/10.1016S0006-2952(99)00256-7 DOI: https://doi.org/10.1016/S0006-2952(99)00256-7
Jovanovic SV, Simic MG. Antioxidants in nutrition. Ann N Y Acad Sci. 2000; 899(1):326-34. https://doi. org/10.1111/j.1749-6632.2000.tb06197.x. PMid:10863550 DOI: https://doi.org/10.1111/j.1749-6632.2000.tb06197.x
Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res. 2007; 51(1):116-34. https://doi.org/10.1002mnfr.200600173. PMid:17195249. PMCid:PMC7168386 DOI: https://doi.org/10.1002/mnfr.200600173
Diker KS, Akan M, Hascelik G, Yurdakök M. The bactericidal activity of tea against Campylobacter jejuni and Campylobacter coli. Lett Appl Microbiol. 1991; 12(2):34-5. https://doi.org/10.1111/j.1472-765X.1991.tb00496.x DOI: https://doi.org/10.1111/j.1472-765X.1991.tb00496.x
Padmini E, Valarmathi A, Rani MU. Comparative analysis of chemical composition and antibacterial activities of Mentha spicata and Camellia sinensis. Asian J Exp Biol Sci. 2010; 1(4):772-81.
Zhang YM, White SW, Rock CO. Inhibiting bacterial fatty acid synthesis. J Biol Chem. 2006; 281(26):17541-4. https:/doi.org/10.1074/jbc.R600004200. PMid:16648134 DOI: https://doi.org/10.1074/jbc.R600004200
Xie Y, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury. Bio Med Res Int. 2018. https://doi.org/10.1155/2018/8353987. PMid:29607326. PMCid:PMC5828321 DOI: https://doi.org/10.1155/2018/8353987
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015; 26(8):1765-76. https://doi.org/10.1681/ASN.2015010006. PMid:25810494. PMCid:PMC4520181 DOI: https://doi.org/10.1681/ASN.2015010006
Nisar MF, He J, Ahmed A, Yang Y, Li M, Wan C. Chemical components and biological activities of the genus Phyllanthus: A review of the recent literature. Mol. 2018; 23(10):2567. https://doi.org/10.3390/molecules23102567. PMid:30297661. PMCid:PMC6222918 DOI: https://doi.org/10.3390/molecules23102567
Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, et al. A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species generation in ischemia/reperfusion injury. Front Immunol. 2018; 9:675. https://doi.org/10.3389/fimmu.2018.00675. PMid:29713320. PMCid:PMC5911593 DOI: https://doi.org/10.3389/fimmu.2018.00675
Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014; 20(9):1447-62. https://doi.org/10.1089/ars.2013.5635. PMid:24124731. PMCid:PMC3936513 DOI: https://doi.org/10.1089/ars.2013.5635
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005; 120(4):483-95. https://doi. org/10.1016/j.cell.2005.02.001. PMid:15734681 DOI: https://doi.org/10.1016/j.cell.2005.02.001
Wang LI, Tu XH, Zhao P, Song JX, Zou ZD. Protective effect of transplanted bone marrow-derived mesenchymal stem cells on pancreatitis-associated lung injury in rats. Mol Med Rep. 2012; 6(2):287-92. https://doi.org/10.3892mmr.2012.922. PMid:22613963 DOI: https://doi.org/10.3892/mmr.2012.922
Li Z, Zhu J, Wan Z, Li G, Chen L, Guo Y. Theaflavin ameliorates renal ischemia/reperfusion injury by activating the Nrf2 signalling pathway in vivo and in vitro. Biomed Pharmacother. 2021; 134. https://doi.org/10.1016/j.biopha. 2020.111097. PMid:33341051 DOI: https://doi.org/10.1016/j.biopha.2020.111097
Abd El-Megeid AA, AbdAllah IZ, Elsadek MF, Abd El-Moneim YF. The protective effect of the fortified bread with green tea against chronic renal failure induced by excessive dietary arginine in male albino rats. World J Dairy Food Sci. 2009; 4(2):107-17.