Traditional Medicine — A Gold Mine in the Treatment of Asthma

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida – 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida – 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida – 201306, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32318

Keywords:

Asthma, Anti-asthma, Bronchoconstriction, Herbal Plants, Phytomedicine

Abstract

Asthma is one of the chronic respiratory disorder whose incidence and intensity is rising day by day. Globally, this devastating disease affects almost 300 million people. Since ancient times, various plants had already been identified as traditionally and utilized by medical practices for managing asthma in many countries. This goal of the article is to investigate and consolidate information on the ethnomedical applications, phytochemistry, and preparation techniques of frequently used medicinal herbs to treat asthma. With soaring efficiency, the search for new, high-value molecules continue, and there are still many medications with side effects that need to be identified. Phenolics, sterols, and terpenoids, which are a key class of phytoconstituents against asthma are only a few examples of the active compounds against asthma that may be found in medicinal plants. It is advised that further research is required to identify adverse effects, effectiveness, and safety, as well as other factors of anti-asthmatic herbs and standardize herbal treatments.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-31

How to Cite

Saini, J., Mazumder, A., & Arbaz Khan. (2023). Traditional Medicine — A Gold Mine in the Treatment of Asthma. Journal of Natural Remedies, 23(3), 711–725. https://doi.org/10.18311/jnr/2023/32318

Issue

Section

Review Articles
Received 2023-01-06
Accepted 2023-06-27
Published 2023-08-31

 

References

Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract. 2014; 2(6):645-8. https://doi. org/10.1016/j.jaip.2014.09.004 DOI: https://doi.org/10.1016/j.jaip.2014.09.004

Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019; 1:46. https://doi.org/10.1016/j.smim.2019.101333 DOI: https://doi.org/10.1016/j.smim.2019.101333

Genuneit J, Seibold AM, Apfelbacher CJ, Konstantinou GN, Koplin JJ, La Grutta S, et al. Overview of systematic reviews in allergy epidemiology. Allergy. 2017; 72(6):849- 56. https://doi.org/10.1111/all.13123 DOI: https://doi.org/10.1111/all.13123

Ödling M, Andersson N, Ekström S, Melén E, Bergström A, Kull I. Characterization of asthma in the adolescent population. Allergy. 2018; 73(8):1744-6. https://doi. org/10.1111/all.13469 DOI: https://doi.org/10.1111/all.13469

Su M-W, Lin W-C, Tsai C-H, Chiang B-L, Yang Y-H, Lin Y-T, et al. Childhood asthma clusters reveal neutrophilpredominant phenotype with distinct gene expression. Allergy. 2018; 73(10):2024-32. https://doi.org/10.1111/ all.13439 DOI: https://doi.org/10.1111/all.13439

Worth L, Michel S, Gaertner VD, Kabesch M, Schieck M. Asthma- and IgE-associated polymorphisms affect expression of TH 17 genes. Allergy. 2018; 73(6):1342-7. https://doi.org/10.1111/all.13422 DOI: https://doi.org/10.1111/all.13422

Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev. 2012; 2012(5). https://doi. org/10.1002/14651858.CD002314.pub3

Delea TE, Hagiwara M, Stempel DA, Stanford RH. Adding salmeterol to fluticasone propionate or increasing the dose of fluticasone propionate in patients with asthma. Allergy Asthma Proc. 2010; 31(3):211-8. https://doi.org/10.2500/ aap.2010.31.3360 DOI: https://doi.org/10.2500/aap.2010.31.3360

Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM, SMART Study Group. The salmeterol multicenter asthma research trial: A comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006; 129(1):15-26. https://doi.org/10.1378/chest.129.1.15 DOI: https://doi.org/10.1378/chest.129.1.15

Fuhlbrigge AL, Lemanske RF, Rasouliyan L, Sorkness CA, Fish JE. Practice patterns for oral corticosteroid burst therapy in the outpatient management of acute asthma exacerbations. Allergy Asthma Proc. 2012; 33(1):82- 9. https://doi.org/10.2500/aap.2012.33.3499 DOI: https://doi.org/10.2500/aap.2012.33.3499

Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev. 2012; 2012(5). https://doi. org/10.1002/14651858.CD002314.pub3 DOI: https://doi.org/10.1002/14651858.CD002314.pub3

Lei DK, Saltoun CA. Allergen immunotherapy: Definition, indication, expectations, safety. Allergy Asthma Proc. 2019;40(6):369-71. https://doi.org/10.2500/ aap.2019.40.4249 DOI: https://doi.org/10.2500/aap.2019.40.4249

Cox L, Nelson H, Lockey R, Calabria C, Chacko T, Finegold I, et al. Allergen immunotherapy: a practice parameter third update. J Allergy Clin Immunol. 2011; 127(1):S1-55. https:// doi.org/10.1016/j.jaci.2010.09.034 DOI: https://doi.org/10.1016/j.jaci.2010.09.034

Global strategy for asthma management and prevention. Global Initiative for Asthma. 2018. Available from: http:// www.ginaasthma.org.

Kianian F, Marefati N, Boskabady M, Ghasemi SZ, Boskabady MH. Pharmacological Properties of Allium cepa, preclinical and clinical evidences; a review. Iran J Pharm Res. 2021; 20(2):107-34.

Beigoli S, Behrouz S, Zia AM, Ghasemi SZ, Boskabady M, Marefati N, et al. Effects of Allium cepa and its constituents on respiratory and allergic disorders: A comprehensive review of experimental and clinical evidence. Evid Based Complement Alternat Med. 2021; 2021. https://doi. org/10.1155/2021/5554259 DOI: https://doi.org/10.1155/2021/5554259

Shafiq S, Shakir M, Ali Q. Medicinal uses of onion (Allium cepa L.): An overview. Life Sci J. 2017;14(6).

Kianian F, Marefati N, Boskabady M, Ghasemi SZ, Boskabady MH. Pharmacological Properties of Allium cepa, preclinical and clinical evidences; A review. Iran J Pharm Res. 2021; 20(2):107-34.

Yahia EM. Fruit and vegetable phytochemicals: Chemistry and human health, 2 Volumes. John Wiley and Sons; 2017. https://doi.org/10.1002/9781119158042 DOI: https://doi.org/10.1002/9781119158042

Kianian F, Marefati N, Boskabady M, Ghasemi SZ, Boskabady MH. Pharmacological Properties of Allium cepa, preclinical and clinical evidences; A review. Iran J Pharm Res. 2021; 20(2):107-34.

Helen A, Krishnakumar K, Vijayammal PL, Augusti KT. Antioxidant effect of onion oil (Allium cepa Linn.) on the damages induced by nicotine in rats as compared to alphatocopherol. Toxicol Lett. 2000; 116(1-2):61-8. https://doi. org/10.1016/S0378- 4274(00)00208-3 DOI: https://doi.org/10.1016/S0378-4274(00)00208-3

Makheja AN, Vanderhoek JY, Bailey JM. Effects of onion (Allium cepa) extract on platelet aggregation and thromboxane synthesis. Prostaglandins Med. 1979; 2(6):413- 24. https://doi.org/10.1016/0161-4630(79)90125-3 DOI: https://doi.org/10.1016/0161-4630(79)90125-3

Lutomski J. Components and biological properties of some Allium species. Poznań: Institute of the Medicinal Plants; 1987. p. 1-58.

Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019; 8(7):246. https://doi. org/10.3390/foods8070246 DOI: https://doi.org/10.3390/foods8070246

El-Saber BG, Magdy BA, Wasef GL, Elewa YH, Al-Sagan AA, El-Hack MEA, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020 24;12(3):872. https://doi. org/10.3390/nu12030872 DOI: https://doi.org/10.3390/nu12030872

Hsieh CC, Liu KF, Liu PC, Ho YT, Li WS, Peng WH, et al. Comparing the protection imparted by different fraction extracts of garlic (Allium sativum L.) against der p– induced allergic airway inflammation in mice. Int J Mol Sci. 2019; 20(19). https://doi.org/10.3390/ijms20194879 DOI: https://doi.org/10.3390/ijms20194879

Anjum V, Ansari SH, Naquvi KJ, Arora P, Ahmad A. Development of quality standards of Carica papaya Linn. Leaves Sch Res Lib. 2013; 5(2):370-6.

Priyadarshi A, Ram B. A review on pharmacognosy, phytochemistry, and pharmacological activity of Carica papaya (Linn.) leaf. Int J Pharm Sci Res. 2018; 9(10):4071-8.

Inam A, Shahzad M, Shabbir A, Shahid H, Shahid K, et al. Carica papaya ameliorates allergic asthma via down regulation of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS levels. Phytomedicine. 2017; 32:1-7. https://doi. org/10.1016/j.phymed.2017.04.009 DOI: https://doi.org/10.1016/j.phymed.2017.04.009

Shaik K, Ande S, Dharmoji R, Yelwarthi SR, Firdouse N. Pharmacological screening of antiasthmatic activity of ethanolic extract of Calotropis gigantea leaves. Pharmacia Tutor. 2017; 5(11):49-52.

Sharma PCDR. Screening for bioactive compounds in different plant parts of Calotropis gigantea L. J Pharm Phyto. 2018; 7.

Negi D, Bisht AS. A review on brief study of Calotropis gigantea Linn. J Drug Deliv Ther. 2021; 11(5):224-8. https:// doi.org/10.22270/jddt.v11i5.5008 DOI: https://doi.org/10.22270/jddt.v11i5.5008

Parhira S, Zhu GY, Li T, Liu L, Bai LP, Jiang ZH. Inhibition of IKK-β by epidioxysterols from the flowers of Calotropis gigantea (Niu jiao gua). Chin Med. 2016; 11:1-8. https://doi. org/10.1186/s13020-016-0081-1 DOI: https://doi.org/10.1186/s13020-016-0081-1

Kumar Sm, Delta A, Kaushik P. Phytochemistry and pharmacology of Calotropis gigantea—An update. Indian J Biochem Biophys. 2022; 59(6):611-8.

Jaliwala YA, Neha C, Bhatt NK, Panda PK, Mohanti PK. Pharmacological evaluation of antitussive, antiasthmatic and expectorant activities of Calotropis gigantea R. Br. in experimental animals. J Pharm Res. 2011; 4.

Negrelle RRB, Gomes EC. Cymbopogon citratus (DC.) Stapf: Chemical Composition and Biological Activities. Rev Bras Pl Botucatu. 2007; 9(1):80-92.

Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (lemon grass). J Adv Pharm Technol Res. 2011; 2(1):3-8. https://doi.org/10.4103/2231-4040.79796 DOI: https://doi.org/10.4103/2231-4040.79796

Akhila A. Essential oil bearing plants: The genus Cymbopogon, Vol. 2010, CRC Press Taylor and Francis Group: Broca Raton FL; 2010. https://doi.org/10.1201/ 9780849378584

Oladeji OS, Adelowo FE, Ayodele DT, Odelade KA. Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci Afr. 2019; 6. https://doi. org/10.1016/j.sciaf.2019.e00137 DOI: https://doi.org/10.1016/j.sciaf.2019.e00137

Machado MSS, Silva HBF, Rios R, de Oliveira AP, Carneiro NVQ, Costa RS et al. The anti-allergic activity of Cymbopogon citratus is mediated via inhibition of nuclear factor kappa B (Nf-Κb) activation. BMC Complement Altern Med. 2015; 15(1). https://doi.org/10.1186/s12906-015-0702-8 DOI: https://doi.org/10.1186/s12906-015-0702-8

Das S, Kumar P, Basu SP. Phytoconstituents and therapeutic potentials of Datura stramonium Linn. J Drug Deliv Ther. 2012; 2(3). https://doi.org/10.22270/jddt.v2i3.141 DOI: https://doi.org/10.22270/jddt.v2i3.141

Sharma M, Dhaliwal I, Rana K, Delta AK, Kaushik P. Phytochemistry, pharmacology, and toxicology of Datura Species — A Review. Antioxidants (Basel). 2021; 10(8). https://doi.org/10.3390/antiox10081291 DOI: https://doi.org/10.3390/antiox10081291

Charpin D, Orehek J, Velardocchio JM. Bronchodilator effects of antiasthmatic cigarette smoke (Datura stramonium). Thorax. 1979; 34(2):259-61. https://doi. org/10.1136/thx.34.2.259 DOI: https://doi.org/10.1136/thx.34.2.259

Gaire BP, Subedi L. A review on the pharmacological and toxicological aspects of Datura stramonium L. J Integr Med. 2013; 11(2):73-9. https://doi.org/10.3736/ jintegrmed2013016

Pretorius E, Marx J. Datura stramonium in asthma treatment and possible effects on prenatal development. Environ Toxicol Pharmacol. 2006; 21(3):331-7. https://doi. org/10.1016/j.etap.2005.10.006 DOI: https://doi.org/10.1016/j.etap.2005.10.006

Kumar S, Malhotra R, Kumar D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn Rev. 2010; 4(7):58- 61. https://doi.org/10.4103/0973-7847.65327 DOI: https://doi.org/10.4103/0973-7847.65327

Nyeem MA, Haque MS, Akramuzzaman M, Siddika R, Sultana S, Islam BR. Euphorbia hirta Linn. A wonderful miracle plant of Mediterranean region: A review. J Med Plants Stud. 2017; 5(3):170-5.

Al-Snafi AE. Pharmacology and therapeutic potential of Euphorbia hirta (Syn: Euphorbia pilulifera) — A review. IOSR J Pharm. 2017; 7(3):7-20. https://doi.org/10.9790/3013- 0703010720 DOI: https://doi.org/10.9790/3013-0703010720

Sundari SK, Kumarappan CT, Jaswanth A, Valarmathy R. Bronchodilator effect of alcoholic extract of Euphorbia hirta linn. Anc Sci Life. 2004; 23(3):1.

Singh D, Singh B, Goel RK. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J Ethnopharmacol. 2011; 134(3):565-83. https://doi. org/10.1016/j.jep.2011.01.046

Kaur A, Rana AC, Tiwari V, Sharma R, Kumar S. Review on ethanomedicinal and pharmacological properties of Ficus religiosa. J Appl Pharm Sci. 2011; 30:06-11.

Kapoor M, Jasani N, Acharya N, Acharya S, Kumar V. Phytopharmacological evaluation and anti-asthmatic activity of Ficus religiosa leaves. Asian Pac J Trop Med. 2011; 4(8):642-4. https://doi.org/10.1016/S1995-7645(11)60163-6 DOI: https://doi.org/10.1016/S1995-7645(11)60163-6

Mahajan SG, Mehta AA. Effect of Moringa oleifera Lam. seed extract on ovalbumin- induced airway inflammation in guinea pigs. Inhal Toxicol. 2008; 20(10):897-909. https:// doi.org/10.1080/08958370802027443 DOI: https://doi.org/10.1080/08958370802027443

Paikra BK, Dhongade HKJ, Gidwani B. Phytochemistry and pharmacology of Moringa oleifera Lam. J Pharmacopuncture. 2017; 20(3):194-200. https://doi. org/10.3831/KPI.2017.20.022 DOI: https://doi.org/10.3831/KPI.2017.20.022

Cáceres A, Cabrera O, Morales O, Mollinedo P, Mendia P. Pharmacological properties of M. oleifera 1. Preliminary screening for antimicrobial activity. J Ethnopharmacol. 1991; 33(3):213-6. https://doi.org/10.1016/0378-8741(91) 90078-R DOI: https://doi.org/10.1016/0378-8741(91)90078-R

Cáceres A, Saravia A, Rizzo S, Zabala L, de Leon E, Nave F. Pharmacological properties of M. oleifera 2. Screening for antispasmodic, anti-inflammatory and diuretic activity. J Ethnopharmacol. 1992; 36(3):233-7. https://doi. org/10.1016/0378- 8741(92)90049-W DOI: https://doi.org/10.1016/0378-8741(92)90049-W

Kirtikar KR, Basu BD. Indian medicinal plants. 2nd ed Dun D, Singh B, Singh MP, editors. Vol. 1; 1975. p. 676-83.

Mahajan SG, Banerjee A, Chauhan BF, Padh H, Nivsarkar M, Mehta AA. Inhibitory effect of n-butanol fraction of Moringa oleifera lam. seeds on ovalbumininduced airway inflammation in a guinea pig model of asthma. Int J Toxicol. 2009; 28(6):519- 27. https://doi. org/10.1177/1091581809345165 DOI: https://doi.org/10.1177/1091581809345165

Agrawal B, Mehta A. Antiasthmatic activity of Moringa oleifera Lam.: A clinical study. Indian J Pharmacol. 2008; 40(1):28-31. https://doi.org/10.4103/0253-7613.40486 DOI: https://doi.org/10.4103/0253-7613.40486

Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of natural product derivatives. 2003; 17(4):299-305. https://doi.org/10.1002/ptr.1309 DOI: https://doi.org/10.1002/ptr.1309

Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 2013; 3(5):337-52. https://doi.org/10.1016/S2221-1691(13) 60075-1 DOI: https://doi.org/10.1016/S2221-1691(13)60075-1

Toma CC, Simu GM, Hanganu DA, Olah N, Vata FM, Hammami C, et al. Chemical composition of the Tunisian Nigella sativa. Note I. Profile on essential oil. Farmacia. 2010; 58(4):458-64.

Atta-ur-Rahman, Malik S, Cun-heng H, Clardy J. Isolation and structure determination of nigellicine, a novel alkaloid from the seeds of nigellasativa. Tetrahedron Lett. 1985; 26(23):2759-62. https://doi.org/10.1016/S0040-4039(00) 94904-9 DOI: https://doi.org/10.1016/S0040-4039(00)94904-9

Kaskoos RA. Fatty acid composition of black cumin oil from Iraq. Res J Med Plants. 2011; 5(1):85-9. https://doi. org/10.3923/rjmp.2011.85.89 DOI: https://doi.org/10.3923/rjmp.2011.85.89

Ammar el-SM, Gameil NM, Shawky NM, Nader MA. A comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int Immuno Pharmacol. 2011; 11(12):2232-6. https://doi.org/10.1016/j.intimp.2011.10.013 DOI: https://doi.org/10.1016/j.intimp.2011.10.013

El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC. Anti- inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol. 2006; 6(7):1135-42. https://doi.org/10.1016/j.intimp.2006.02.004 DOI: https://doi.org/10.1016/j.intimp.2006.02.004

Modaresi M, Alasvand Zarasvand M, Madani M. The effects of hydro-alcoholic extract of Artemisia dracunculus L. (Tarragon) on hematological parameters in mice. J Basic Res Med Sci. 2018; 5(1):10-4. https://doi.org/10.29252/ jbrms.5.1.10 DOI: https://doi.org/10.29252/jbrms.5.1.10

Alarcón de la Lastra C, Martín MJ, Motilva V. Antiulcer and gastroprotective effects of quercetin: A gross and histologic study. Pharmacology. 1994; 48(1):56-62. https:// doi.org/10.1159/000139162 DOI: https://doi.org/10.1159/000139162

Fortunato LR, Alves CdF, Teixeira MM, Rogerio AP. Quercetin: A flavonoid with the potential to treat asthma. Braz J Pharm Sci. 2012; 48(4):589-99. https://doi. org/10.1590/S1984-82502012000400002 DOI: https://doi.org/10.1590/S1984-82502012000400002

Majee C, Mazumder R, Choudhary AN. Medicinal plants with antiulcer and hepatoprotective activity: A review. Int J Pharm Sci Res. 2019; 10(1):1-11. https://doi.org/10.13040/ IJPSR.0975-8232.10(1).1-11

Gong JH, Cho IH, Shin D, Han SY, Park SH, Kang YH. Inhibition of airway epithelial- to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice. Lab Invest. 2014; 94(3):297-308. ttps://doi.org/10.1038/labinvest.2013.137 DOI: https://doi.org/10.1038/labinvest.2013.137

Gong JH, Shin D, Han SY, Park SH, Kang MK, Kim JL, et al. Blockade of airway inflammation by kaempferol via disturbing Tyk-STAT signaling in airway epithelial cells and in asthmatic mice. Evid Based Complement Alternat Med. 2013; 2013. https://doi.org/10.1155/2013/250725 DOI: https://doi.org/10.1155/2013/250725

Khan H. Alkaloids: Potential therapeutic modality in the management of asthma. J Ayu Her Med. 2015; 1(1):3. https://doi.org/10.31254/jahm.2015.1102 DOI: https://doi.org/10.31254/jahm.2015.1102

Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 2007; 55(3):207-16. https://doi.org/10.1016/j.phrs. 2007.01.012 DOI: https://doi.org/10.1016/j.phrs.2007.01.012

Islam F, Muni M, Mitra S, Emran TB, Chandran D, Das R. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed Pharmacother. 2022; 155. https://doi.org/10.1016/j.biopha.2022.113786 DOI: https://doi.org/10.1016/j.biopha.2022.113786

Hazlewood LC, Wood LG, Hansbro PM, Foster PS. Dietary lycopene supplementation suppresses Th2 responses and lung eosinophilia in a mouse model of allergic asthma. J Nutr Biochem. 2011; 22(1):95-100. https://doi.org/10.1016/j. jnutbio.2009.12.003 DOI: https://doi.org/10.1016/j.jnutbio.2009.12.003

Kurup VP, Barrios CS. Immunomodulatory effects of curcumin in allergy. Mol Nutr Food Res. 2008; 52(9):1031- 9. https://doi.org/10.1002/mnfr.200700293 DOI: https://doi.org/10.1002/mnfr.200700293

Chauhan PS, Kumari S, Kumar JP, Chawla R, Dash D, Singh M, et al. Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol. 2013; 17(3):733- 43. https://doi.org/10.1016/j.intimp.2013.08.008 DOI: https://doi.org/10.1016/j.intimp.2013.08.008

Sisay B, Debebe E, Meresa A, Gemechu W, Kasahun T, Teka F, et al. Phytochemistry and method preparation of some medicinal plants used to treat asthma - Review. J Anal Pharm Res. 2020; 9(3):107-15. https://doi.org/10.15406/ japlr.2020.09.00359 DOI: https://doi.org/10.15406/japlr.2020.09.00359

Biswasroy P, Sthitapragnya P, Debajyoti D, Madhab KD, Goutam G. Pharmacological investigation of Calotropis gigantea: A benevolent herb of Nature. Res J Pharm Technol. 2020; 13:461. https://doi.org/10.5958/0974- 360X.2020.00090.6 DOI: https://doi.org/10.5958/0974-360X.2020.00090.6

Gaire BP, Subedi L. A review on the pharmacological and toxicological aspects of Datura stramonium L. J Integr Med. 2013; 11(2):73-9. https://doi.org/10.3736/ jintegrmed2013016 DOI: https://doi.org/10.3736/jintegrmed2013016

Singh D, Singh B, Goel RK. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J Ethnopharmacol. 2011; 134(3):565-83. https://doi. org/10.1016/j.jep.2011.01.046 DOI: https://doi.org/10.1016/j.jep.2011.01.046

Most read articles by the same author(s)

1 2 > >>