Role of Phytoflavonoids in the Management of Anxiety and Depression: An Overview

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park II, Greater Noida - 201306, Uttar Pradesh, India ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park II, Greater Noida - 201306, Uttar Pradesh, India ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park II, Greater Noida - 201306, Uttar Pradesh, India ,IN

DOI:

https://doi.org/10.18311/jnr/2023/33991

Keywords:

Anxiety, Depression, Flavonoids, Medicinal Plants, Phytoconstituents, Traditional Medicine

Abstract

The main global health issue, anxiety, and depression have significant psychological, social, and financial repercussions. It promotes an anticipatory and adaptable reaction to difficult or stressful situations. When anxiety is excessive, it destabilizes the person, which leads to a dysfunctional state. In the absence of intense situations, it’s a pathological state. It comprises posttraumatic stress disorder, general anxiety, aversion to social situations, obsessive-compulsive disorder, and panic disorder. Some people think about using natural therapies as an alternative to anxiety drugs because they may cause negative side effects. Due to their natural origins and lack of adverse effects, these medications and herbal medicine are becoming more and more popular in both developed and developing nations. Minerals, organic matter, and medicinal plants are the sources of many traditional remedies. Alkaloids, also saponins, glycosides, flavonoids, which, etc. are all present. The goal of this summary is to provide in-depth knowledge about the many phytoconstituents that have the potential to reduce anxiety and play a significant role in CNS activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Arbaz Khan, Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park II, Greater Noida - 201306, Uttar Pradesh, India

 

 

Jatin Saini, Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park II, Greater Noida - 201306, Uttar Pradesh, India

 

 

Downloads

Published

2023-11-06

How to Cite

Mazumder, A., Khan, A., & Saini, J. (2023). Role of Phytoflavonoids in the Management of Anxiety and Depression: An Overview. Journal of Natural Remedies, 23(4), 1223–1235. https://doi.org/10.18311/jnr/2023/33991

Issue

Section

Review Articles

Categories

Received 2023-06-06
Accepted 2023-07-24
Published 2023-11-06

 

References

Kuloglu M, Atmaca M, Tezcan E, Ustundag B, Bulut S. Antioxidant enzyme and malondialdehyde levels in patients with panic disorder. Neuropsychobiology. 2002; 46(4):1869. https://doi.org/10.1159/000067810 PMid:12566935

Bouayed J, Rammal H, Younos C, Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 2007; 564(1-3):146-9. https://doi.org/10.1016/j.ejphar.2007.02.055 PMid:17395178

Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord. 2001; 64(1):43-51. https://doi.org/10.1016/S0165-0327(00)00199-3 PMid: 11292519 DOI: https://doi.org/10.1016/S0165-0327(00)00199-3

Guelfi JD. Comorbidity of anxiety-depression and its treatment. Encéphale. 1993; 19(2):397-404. PMID 7904238.

Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. The burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLOS Med. 2013; 10(11):e1001547. https://doi.org/10.1371/journal.pmed.1001547 PMid:24223526 PMCid: PMC3818162 DOI: https://doi.org/10.1371/journal.pmed.1001547

Kuloglu M, Atmaca M, Tezcan E, Ustundag B, Bulut S. Antioxidant enzyme and malondialdehyde levels in patients with panic disorder. Neuropsychobiology. 2002; 46(4):1869. https://doi.org/10.1159/000067810 PMid:12566935 DOI: https://doi.org/10.1159/000067810

Bouayed J, Rammal H, Younos C, Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 2007; 564(1-3):146-9. https://doi.org/10.1016/j.ejphar.2007.02.055 PMid:17395178

Rammal H, Bouayed J, Younos C, Soulimani R. Evidence that oxidative stress is linked to anxiety-related behaviour in mice. Brain Behav Immun. 2008; 22(8):1156-9. https://doi.org/10.1016/j.bbi.2008.06.005 PMid:18620042 DOI: https://doi.org/10.1016/j.bbi.2008.06.005

Patel KP, Chandel SS. Pharmacological models to appraisement of antianxiety activity in experimental animals. Int J Green Pharm. 2018; 12(3):1-10.

Adwas AA, Jbireal JM. Anxiety: insights into signs, symptoms, aetiology, pathophysiology, and treatment. East Afr Scholars J Med Sci. 2019; 2:580-91.

Liu L, Liu C, Wang Y, Wang P, Li Y, Li B. Herbal medicine for anxiety, depression and insomnia. Curr Neuropharmacol. 2015; 13(4):481-93. https://doi.org/10.2174/1570159X1304150831122734 PMid:26412068 PMCid: PMC4790408 DOI: https://doi.org/10.2174/1570159X1304150831122734

Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006; 27(1):1-93. https://doi.org/10.1016/j.mam.2005.07.008 PMid:16105678 DOI: https://doi.org/10.1016/j.mam.2005.07.008

Antonijevic IA. Depressive disorders-is it time to endorse different pathophysiologies? Psychoneuroendocrinology. 2006; 31(1):1-15. https://doi.org/10.1016/j.psyneuen.2005.04.004 PMid:15950391 DOI: https://doi.org/10.1016/j.psyneuen.2005.04.004

Sarris J, Kavanagh DJ. Kava and St. John’s wort: current evidence for use in mood and anxiety disorders. J Altern Complement Med. 2009; 15(8):827-36. https://doi.org/10.1089/acm.2009.0066 PMid:19614563

Hindmarch I. Expanding the horizons of depression: beyond the monoamine hypothesis. Hum Psychopharmacol. 2001; 16(3):203-18. https://doi.org/10.1002/hup.288 PMid:12404573 DOI: https://doi.org/10.1002/hup.288

Young SN, Leyton M. The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav. 2002; 71(4):857-65. https://doi.org/10.1016/S0091-3057(01)00670-0 PMid:11888576 DOI: https://doi.org/10.1016/S0091-3057(01)00670-0

Sarris J, Kavanagh DJ. Kava and St. John’s wort: current evidence for use in mood and anxiety disorders. J Altern Complement Med. 2009; 15(8):827-36. https://doi.org/10.1089/acm.2009.0066 PMid:19614563 DOI: https://doi.org/10.1089/acm.2009.0066

Nutt DJ, Ballenger JC, Sheehan D, Wittchen HU. Generalized anxiety disorder; comorbidity, comparative biology, and treatment int J Neuropsychopharmacol. Int J Neuropsychopharmacol. 2002; 5(4):315-25. https://doi.org/10.1017/S1461145702003048 PMid:12466031 DOI: https://doi.org/10.1017/S1461145702003048

Spinella M. The psychopharmacology of herbal medicine: plant drugs that alter the mind. Brain Behav. 2001.

Ng QX, Venkatanarayanan N, Ho CY. Clinical use of Hypericum perforatum (St. John’s Wort) in depression: A meta-analysis. J Affect Disord. 2017; 210:211-21. https://doi.org/10.1016/j.jad.2016.12.048 PMid:28064110 DOI: https://doi.org/10.1016/j.jad.2016.12.048

Canenguez Benitez JS, Hernandez TE, Sundararajan R, Sarwar S, Arriaga AJ, Khan AT, et al. Advantages and disadvantages of using St. John’s Wort as a treatment for depression. Cureus. 2022; 14(9):e29468. https://doi.org/10.7759/cureus.29468 DOI: https://doi.org/10.7759/cureus.29468

Dell’Aica I, Garbisa S, Caniato R. The renaissance of Hypericum perforatum: biomedical research catches up with folk medicine. Curr Bioact Compd. 2007; 3(2):109-19. https://doi.org/10.2174/157340707780809644 DOI: https://doi.org/10.2174/157340707780809644

Chen SL, Chen CH. Effects of lavender tea on fatigue, depression, and maternal-infant attachment in sleepdisturbed postnatal women. Worldviews Evid-Based Nurs. 2015; 12(6):370-9. https://doi.org/10.1111/wvn.12122 PMid:26523950 DOI: https://doi.org/10.1111/wvn.12122

Montemurro N, Ricciardi L, Scerrati A, Castorina A, Nawrot J, Gornowicz-Porowska J, et al. Medicinal herbs in the relief of neurological, cardiovascular, and respiratory symptoms after covid-19 infection a literature review. Cells 2022, 11, 1897. Pharmacol Ther. 2019; 204:107402. https://doi.org/10.3390/cells11121897 PMid:35741026 PMCid: PMC9220793 DOI: https://doi.org/10.3390/cells11121897

Effati-Daryani F, Mohammad-Alizadeh-Charandabi S, Mirghafourvand M, Taghizadeh M, Mohammadi A. Effect of lavender cream with or without footbath on anxiety, stress and depression in pregnancy: A randomized placebocontrolled trial. J Caring Sci. 2015; 4(1):63-73.

López V, Nielsen B, Solas M, Ramírez MJ, Jäger AK. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Front Pharmacol. 2017; 8:280. https://doi.org/10.3389/fphar.2017.00280 PMid:28579958 PMCid: PMC5437114 DOI: https://doi.org/10.3389/fphar.2017.00280

Chen L, Wang X, Lin ZX, Dai JG, Huang YF, Zhao YN. Preventive effects of ginseng total saponins on chronic corticosterone-induced impairment in astrocyte structural plasticity and hippocampal atrophy. Phytother Res. 2017; 31(9):1341-8. https://doi.org/10.1002/ptr.5859 PMid:28656606 DOI: https://doi.org/10.1002/ptr.5859

Safari M, Asadi A, Aryaeian N, Huseini HF, Jazayeri S, Malek M, et al. The effects of Melissa officinalis on depression and anxiety in type 2 diabetes patients with depression: a randomized double-blinded placebo-controlled clinical trial. BMC Complement Med Ther. 2023; 23(1):1-0. https:// doi.org/10.1186/s12906-023-03978-x PMid:37131158 PMCid: PMC10152712 DOI: https://doi.org/10.1186/s12906-023-03978-x

Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: a review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res. 2022; 184:106421. https://doi.org/10.1016/j.phrs.2022.106421 PMid:36096427 DOI: https://doi.org/10.1016/j.phrs.2022.106421

Haybar H, Javid AZ, Haghighizadeh MH, Valizadeh E, Mohaghegh SM, Mohammadzadeh A. The effects of Melissa officinalis supplementation on depression, anxiety, stress, and sleep disorder in patients with chronic stable angina. Clin Nutr ESPEN. 2018; 26:47-52. https://doi.org/10.1016/j.clnesp.2018.04.015 PMid:29908682 DOI: https://doi.org/10.1016/j.clnesp.2018.04.015

Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice; involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(4):642-50. https://doi.org/10.1016/j.pnpbp.2009.03.004 PMid:19286446 DOI: https://doi.org/10.1016/j.pnpbp.2009.03.004

Jinna P. Acorus calamus Linn. A herbal tonic for the central nervous system. J Sci Innov Res. 2013; 2(5):950-4.

Arctander S. Perfume and flavour materials of natural origin. Perfume Flavor Mater Nat Orig. 1960.

Moghari M, Sadat Z, Mirbagher N. Effects of aromatherapy using sour lemon on anxiety in patients undergoing chemotherapy: a clinical trial study. J Clin Care Skills. 2023; 4(1):0-.

Vishal A, et al. Diuretic, laxative and toxicity Studies of Viola odorata aerial parts. Pharmacol Online. 2009; 1:739-48.

Anderson RA. Roussel AM. 2008 Cinnamon, glucose and insulin sensitivity. Nutraceuticals, glycemic health and type. 2:127-40. https://doi.org/10.1002/9780813804149.ch8 DOI: https://doi.org/10.1002/9780813804149.ch8

Bouayed J, Rammal H, Younos C, Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 2007; 564(1-3):146-9. https://doi.org/10.1016/j.ejphar.2007.02.055 PMid:17395178 DOI: https://doi.org/10.1016/j.ejphar.2007.02.055

Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci. 2007; 262(1-2):77-84. https://doi.org/10.1016/j.jns.2007.06.028 PMid:17698084

Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res. 2005; 52(3):199-203. https://doi.org/10.1016/j.phrs.2005.03.003 PMid:16026713 DOI: https://doi.org/10.1016/j.phrs.2005.03.003

Shamabadi A, Kafi F, Arab Bafrani M, Asadigandomani H, A Basti F, Akhondzadeh S. l-theanine adjunct to sertraline for major depressive disorder: A randomized, doubleblind, placebo-controlled clinical trial. J Affect Disord. 2023; 333:38-43. https://doi.org/10.1016/j.jad.2023.04.029 PMid:37084960 DOI: https://doi.org/10.1016/j.jad.2023.04.029

Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem. 2000; 48(11):5496-500. https://doi.org/10.1021/jf000483q PMid:11087508 DOI: https://doi.org/10.1021/jf000483q

Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci. 2007; 262(1-2):77-84. https://doi.org/10.1016/j.jns.2007.06.028 PMid:17698084 DOI: https://doi.org/10.1016/j.jns.2007.06.028

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79(5):727-47. https://doi.org/10.1093/ajcn/79.5.727 PMid:15113710 DOI: https://doi.org/10.1093/ajcn/79.5.727

Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. The antioxidant effect of plums and polyphenolic compounds against H2O2-induced oxidative stress in mice blood granulocytes. J Med Food. 2009; 12(4):861-8. https://doi.org/10.1089/jmf.2008.0165 PMid:19735188 DOI: https://doi.org/10.1089/jmf.2008.0165

Takeda H, Tsuji M, Inazu M, Egashira T, Matsumiya T. Rosmarinic acid and caffeic acid produce an antidepressivelike effect in the forced swimming test in mice. Eur J Pharmacol. 2002; 449(3):261-7. https://doi.org/10.1016/S0014-2999(02)02037-X PMid:12167468 DOI: https://doi.org/10.1016/S0014-2999(02)02037-X

Amzad Hossain M, Salehuddin SM, Kabir MJ, Rahman SMM, Rupasinghe HPV. Sinensetin, rutin, 3´-hydroxy-5, 6, 7, 4´- tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of the skin of apple fruit. Food Chem. 2009; 113(1):185-90. https://doi.org/10.1016/j.foodchem.2008.07.085 DOI: https://doi.org/10.1016/j.foodchem.2008.07.085

Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine. 2008; 4(1):70-8. https://doi.org/10.1016/j.nano.2007.12.001 PMid:18249157 DOI: https://doi.org/10.1016/j.nano.2007.12.001

Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, et al. Overview—flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res. 1997; 22(4):419-25. https://doi.org/10.1023/A:1027303609517 PMid:9130252 DOI: https://doi.org/10.1023/A:1027303609517

Grosso C, Valentão P, Andrade PB. Depressive disorders: prevalence, costs, and theories. In: Grosso C, editor. Herbal medicine in depression: traditionalmedicine to innovativedrugdelivery. Cham: Springer International Publishing. 2016. p. 1-41. https://doi.org/10.1007/978-3319-14021-6_1 DOI: https://doi.org/10.1007/978-3-319-14021-6_1

Salmani H, Hakimi Z, Arab Z, Marefati N, Mahdinezhad MR, Rezaei Golestan A, et al. Carvacrol attenuated neuroinflammation, oxidative stress and depression and anxiety-like behaviours in lipopolysaccharide-challenged rats. Avicenna J Phytomed. 2022;12(5):514-26.

Shen M, Yang Y, Wu Y, Zhang B, Wu H, Wang L, et al. L-theanine ameliorate depressive-like behaviour in a chronic unpredictable mild stress rat model via modulating the monoamine levels in limbic-corticalstriatal-pallidalcircuit related brain regions. Phytother Res. 2019; 33(2):41221. https://doi.org/10.1002/ptr.6237 PMid:30474152 DOI: https://doi.org/10.1002/ptr.6237

Ogawa S, Ota M, Ogura J, Kato K, Kunugi H. Effects of L-theanine on anxiety-like behaviour, cerebrospinal fluid amino acid profile, and hippocampal activity in Wistar Kyoto rats. Psychopharmacol (Berl). 2018; 235(1):37-45. https://doi.org/10.1007/s00213-017-4743-1 PMid:28971241 DOI: https://doi.org/10.1007/s00213-017-4743-1

Lopresti AL. Potential role of curcumin for the treatment of major depressive disorder. CNS Drugs. 2022;36(2):123-41. https://doi.org/10.1007/s40263-022-00901-9 PMid:35129813 PMCid: PMC8863697 DOI: https://doi.org/10.1007/s40263-022-00901-9

Trabace L, Zotti M, Morgese MG, Tucci P, Colaianna M, Schiavone S, et al. The oestrous cycle affects the neurochemical and neurobehavioral profile of carvacroltreated female rats. Toxicol Appl Pharmacol. 2011; 255(2):169-75. https://doi.org/10.1016/j.taap.2011.06.011 PMid:21723308 DOI: https://doi.org/10.1016/j.taap.2011.06.011

Amiresmaeili A, Roohollahi S, Mostafavi A, Askari N. Effects of oregano essential oil on brain TLR4 and TLR2 gene expression and depressive-like behaviour in a rat model. Res Pharm Sci. 2018; 13(2):130-41. https://doi.org/10.4103/1735-5362.223795 PMid:29606967 PMCid: PMC5842484 DOI: https://doi.org/10.4103/1735-5362.223795

Ng QX, Koh SSH, Chan HW, Ho CYX. Clinical use of curcumin in depression: A meta-analysis. J Am Med Dir Assoc. 2017; 18(6):503-8. https://doi.org/10.1016/j.jamda.2016.12.071 PMid: 28236605 DOI: https://doi.org/10.1016/j.jamda.2016.12.071

Lopresti AL, Drummond PD. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebocontrolled study. J Affect Disord. 2017; 207:188-96. https://doi.org/10.1016/j.jad.2016.09.047 PMid:27723543 DOI: https://doi.org/10.1016/j.jad.2016.09.047

He X, Yang L, Wang M, Zhuang X, Huang R, Zhu R, et al. Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dronabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem. 2017; 42(6):2281-94. https://doi.org/10.1159/000480001PMid:28848078 DOI: https://doi.org/10.1159/000480001

Lopresti AL. Curcumin for neuropsychiatric disorders: A review of in vitro, animal and human studies. J Psychopharmacol. 2017; 31(3):287-302. https://doi.org/10.1177/0269881116686883 PMid:28135888 DOI: https://doi.org/10.1177/0269881116686883

Dong X, Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine. 2022; 105:154355. https://doi.org/10.1016/j.phymed.2022.154355 PMid:35908520 DOI: https://doi.org/10.1016/j.phymed.2022.154355

Singh T, Kaur T, Goel RK. Ferulic acid supplementation for the management of depression in epilepsy. 2017; 42(10):2940-8:28608235. https://doi.org/10.1007/s11064017-2325-6 PMid:28608235 DOI: https://doi.org/10.1007/s11064-017-2325-6

Zeni ALB, Camargo A, Dalmagro AP. Ferulic acid reverses depression-like behaviour and oxidative stress induced by chronic corticosterone treatment in mice. Steroids. 2017; 125:131-6. https://doi.org/10.1016/j.steroids.2017.07.006 PMid:28733038 DOI: https://doi.org/10.1016/j.steroids.2017.07.006

.Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol. 2017; 45:128-34. https://doi.org/10.1016/j.intimp.2017.02.007 PMid:28213267 DOI: https://doi.org/10.1016/j.intimp.2017.02.007

Jiang X, Liu J, Lin Q, Mao K, Tian F, Jing C, et al. Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behaviour in mice via the neuroinflammatory pathway. Brain Res Bull. 2017; 135:40-6. https://doi.org/10.1016/j.brainresbull.2017.09.010 PMid:28941603 DOI: https://doi.org/10.1016/j.brainresbull.2017.09.010

Abhijit S, Subramanyam MVV, Devi SA. Grape seed proanthocyanidin and swimming exercise protect against cognitive decline: A study on M1 acetylcholine receptors in ageing male rat brain. Neurochem Res. 2017; 42(12):3573-86. https://doi.org/10.1007/s11064-017-24066 PMid:28993969 DOI: https://doi.org/10.1007/s11064-017-2406-6

Xu Y, Wang Z, You W, Zhang X, Li S, Barish PA, et al. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. EurNeuropsychopharmacol. 2010; 20(6):405-13. https://doi.org/10.1016/j.euroneuro.2010.02.013 PMid:20353885 DOI: https://doi.org/10.1016/j.euroneuro.2010.02.013

El-Shitany NA, Eid B. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway. Environ Toxicol. 2017;32(7):1952-63. https://doi.org/10.1002/tox.22418 PMid:28371137 DOI: https://doi.org/10.1002/tox.22418

Moore A, Beidler J, Hong MY. Resveratrol and depression in animal models: A systematic review of the biological mechanisms. Molecules. 2018; 23(9):e2197. https://doi.org/10.3390/molecules23092197 PMid:30200269 PMCid: PMC6225181 DOI: https://doi.org/10.3390/molecules23092197

Ali SH, Madhana RM, Athira KV, Kasala ER, Bodduluru LN, Pitta S, et al. Resveratrol ameliorates depressive-like behaviour in repeated corticosterone-induced depression in mice. Steroids. 2015; 101:37-42. https://doi.org/10.1016/j.steroids.2015.05.010 PMid:26048446 DOI: https://doi.org/10.1016/j.steroids.2015.05.010

Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A. 2007; 104(17):7217-22. https://doi.org/10.1073/pnas.0610068104 PMid:17438283 PMCid: PMC1855377 DOI: https://doi.org/10.1073/pnas.0610068104

Nakazawa T, Yasuda T, Ueda J, Ohsawa K. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull.2003;26(4):474-80. https://doi.org/10.1248/bpb.26.474 PMid:12673028 DOI: https://doi.org/10.1248/bpb.26.474

Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behaviour by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016; 296:318-25. https://doi.org/10.1016/j.bbr.2015.09.031 PMid:26416673 DOI: https://doi.org/10.1016/j.bbr.2015.09.031

Li RP, Zhao D, Qu R, Fu Q, Ma SP. The effects of apigenin on lipopolysaccharide-induced depressive-like behaviour in mice. Neurosci Lett. 2015; 594:17-22. https://doi. org/10.1016/j.neulet.2015.03.040 PMid:25800110 DOI: https://doi.org/10.1016/j.neulet.2015.03.040

Liu C, Wu J, Gu J, Xiong Z, Wang F, Wang J, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav.2007; 86(3):423-30. https://doi.org/10.1016/j.pbb.2006.11.005PMid:17289131 DOI: https://doi.org/10.1016/j.pbb.2006.11.005

Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, et al. Chronic administration of baicalein decreases depressionlike behaviour induced by repeated restraint stress in rats. Korean J Physiol Pharmacol. 2013; 17(5):393-403. https://doi.org/10.4196/kjpp.2013.17.5.393 PMid:24227939 PMCid: PMC3823951 DOI: https://doi.org/10.4196/kjpp.2013.17.5.393

Li YC, Shen JD, Li J, Wang R, Jiao S, Yi LT. Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behaviour: involving the inhibition of cyclooxygenase-2 in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 40:138-43. https://doi.org/10.1016/j.pnpbp.2012.09.007PMid:23022674 DOI: https://doi.org/10.1016/j.pnpbp.2012.09.007

Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther. 2020; 20(1):241. https://doi.org/10.1186/s12906-020-03033-z PMid:32738903 PMCid: PMC7395214 DOI: https://doi.org/10.1186/s12906-020-03033-z

Ma Z, Wang G, Cui L, Wang Q. Myricetin attenuates depressantlike behaviour in mice subjected to repeated restraint stress. Int J Mol Sci. 2015; 16(12):28377-85. https://doi.org/10.3390/ijms161226102 PMid:26633366 PMCid: PMC4691049 DOI: https://doi.org/10.3390/ijms161226102

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, inflammation, and immunity. Nutrients. 2016; 8(3):167. https://doi.org/10.3390/nu8030167 PMid: 26999194 PMCid: PMC4808895 DOI: https://doi.org/10.3390/nu8030167

Demir EA, Gergerlioglu HS, Oz M. Antidepressant-like effects of quercetin in diabetic rats are independent of the hypothalamic-pituitary-adrenal axis. Acta Neuropsychiatr. 2016; 28(1):23-30. https://doi.org/10.1017/neu.2015.45 PMid:26234153 DOI: https://doi.org/10.1017/neu.2015.45

Ganeshpurkar A, Saluja AK. The pharmacological potential of Rutin. Saudi Pharm J. 2017; 25(2):149-64. https://doi.org/10.1016/j.jsps.2016.04.025 PMid:28344465 PMCid: PMC5355559 DOI: https://doi.org/10.1016/j.jsps.2016.04.025

Al-Dhabi NA, Arasu MV, Park CH, Park SU. An up-todate review of rutin and its biological and pharmacological activities. Excli J. 2015; 14:59-63.

Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Rutin: A review on extraction, identification and

purification methods, biological activities, and approaches to enhance its bioavailability. Trends Food Sci Technol. 2017; 67:220-35. https://doi.org/10.1016/j.tifs.2017.07.008 DOI: https://doi.org/10.1016/j.tifs.2017.07.008

Most read articles by the same author(s)

1 2 > >>