Effects of Various Herbal leaves Extract and Their Phytoconstituents in the Cure of Diabetic Nephropathy by ‘Streptozotocin-induced in Rats’ Model - A Review

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Department of Biotechnology),19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh ,IN
  • School of Pharmaceutical Sciences, Lovely Professional University, Phagwara – 144001, Punjab ,IN

DOI:

https://doi.org/10.18311/jnr/2023/33598

Keywords:

Diabetes Mellitus, Diabetes Nephropathy, Medicinal Plant, Pathogenesis, Streptozotocin-induced in Rats’ Model

Abstract

The purpose of this study was to collect data for future clinical investigations and research on the safe and efficient use of various herbal medicines to treat hyperglycemia. One of the primary contributing reasons to the onset and progression of diabetic nephropathy is hyperglycemia, and many modern treatments are made from plants since they frequently have fewer side effects than the conventional medications that are now available. The medicinal plants include Sesbania sesban, Elaeis guineensis, Tecoma stans, Aloe barbadensis miller, Zingiber officinale Roscoe, Olea europaea, Anogeissus acuminata, Juglans regia L., Fragaria ananassa, Ginkgo biloba, Laurus nobilis L., Dryopteris dilatata, Moringa oleifera, Punica granatum L., Lycium chinense, Rumex nervous alkaloids and flavonoids are the primary phytoconstituents that aid in the therapy or cure of diabetic nephropathy. The therapeutic effects of medicinal plant leaf extract may be due to the wide range of bioactive compounds present, including various phytoconstituents such as alkaloids and flavonoids, glycosides, steroids, terpenoids, and phenolics. Alkaloids and flavonoids are the primary phytoconstituents that aid in the therapy or cure of diabetic nephropathy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-09

How to Cite

Kushwah, M., Mazumder, A., Shakya , R., Mishra, R., & Kumar, B. (2023). Effects of Various Herbal leaves Extract and Their Phytoconstituents in the Cure of Diabetic Nephropathy by ‘Streptozotocin-induced in Rats’ Model - A Review. Journal of Natural Remedies, 23(4), 1191–1208. https://doi.org/10.18311/jnr/2023/33598

Issue

Section

Review Articles
Received 2023-04-26
Accepted 2023-07-24
Published 2023-11-09

 

References

Ayodele OE, Alebiosu CO, Salako BL. Diabetic nephropathy - A review of the natural history, burden, risk factors and treatment. J Natl Med Assoc. 2004; 96(11):1445-54. PMID 15586648. PMCID PMC2568593

Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care. 2004; 27(Suppl 1):S79-83. https://doi.org/10.2337/diacare.27.2007.S79 PMid:14693934

Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5):1047-53. https://doi.org/10.2337/diacare.27.5.1047 PMid:15111519

Sharma D, Bhattacharya P, Kalia K, Tiwari V, Tiwari V. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract. 2017; 128:91-108. https://doi.org/10.1016/j.diabres.2017.04.010 PMid:28453961 DOI: https://doi.org/10.1016/j.diabres.2017.04.010

Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010; 87(1):4-14. https://doi.org/10.1016/j.diabres.2009.10.007 PMid:19896746 DOI: https://doi.org/10.1016/j.diabres.2009.10.007

Oliveira RSM, Rebocho A, Ahmadpour E, Nissapatorn V, Pereira DM, Pereira DM. Type 1 diabetes mellitus: a review on advances and challenges in creating insulin-producing devices. Micromachines. 2023; 14(1):151. https://doi.org/10.3390/mi14010151 PMid:36677212 PMCid: PMC9867263

Tsai IT, Wu CC, Hung WC, Lee TL, Hsuan CF, Wei CT, et al. FABP1 and FABP2 as markers of diabetic nephropathy. Int J Med Sci. 2020; 17(15):2338-45. https://doi.org/10.7150/ijms.49078 PMid:32922199 PMCid:PMC7484639 DOI: https://doi.org/10.7150/ijms.49078

Hajam YA, Rani R, Malik JA, Pandita A, Sharma R, Kumar R. Diabetes mellitus: signs and symptoms, epidemiology, current prevention, management therapies, and treatments. In: Antidiabetic potential of plants in the era of omics. Apple Academic Press; 2023. pp. 31-77. https://doi.org/10.1201/9781003282860-3 DOI: https://doi.org/10.1201/9781003282860-3

Mayfield JA. Diagnosis and classification of diabetes mellitus: new criteria. Am Fam Phys. 1998; 58(6):1355-62. PMID 9803200.

Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. Diabetes. 1979; 28(12):1039-57. https://doi.org/10.2337/diab.28.12.1039 PMid:510803 DOI: https://doi.org/10.2337/diab.28.12.1039

Magliano DJ, Zimmet P, Shaw JE. Classification of diabetes mellitus and other categories of glucose intolerance. Int Textbook Diabetes Mellitus. 2015; p. 1-6. https://doi.org/10.1002/9781118387658 DOI: https://doi.org/10.1002/9781118387658.ch1

Hajam YA, Malik JA, Pandita D, Rani R. Diabetes mellitus: history, diagnosis, classification, pathophysiology, and risk factors. In: Antidiabetic potential of plants in the era of omics. Apple Academic Press; 2023. p. 3-29. https://doi.org/10.1201/9781003282860-2 DOI: https://doi.org/10.1201/9781003282860-2

Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017; 3(1):17016. https://doi.org/10.1038/nrdp.2017.16 PMid:28358037 DOI: https://doi.org/10.1038/nrdp.2017.16

Oliveira RSM, Rebocho A, Ahmadpour E, Nissapatorn V, Pereira DM, Pereira DM. Type 1 diabetes mellitus: a review on advances and challenges in creating insulin-producing devices. Micromachines. 2023; 14(1):151. https://doi.org/10.3390/mi14010151 PMid:36677212 PMCid: PMC9867263 DOI: https://doi.org/10.3390/mi14010151

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013; 36(Suppl 1):S67-74. https://doi.org/10.2337/dc13-S067 PMid:23264425 PMCid:PMC3537273 DOI: https://doi.org/10.2337/dc13-S067

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015; 1(1):15019. https://doi.org/10.1038/nrdp.2015.19 PMid:27189025 DOI: https://doi.org/10.1038/nrdp.2015.19

Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012; 27(4):269-73. https://doi.org/10.5001/omj.2012.68 PMid:23071876 PMCid:PMC3464757 DOI: https://doi.org/10.5001/omj.2012.68

Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest. 2005; 115(3):485-91. https://doi.org/10.1172/JCI24531 PMid:15765129 PMCid: PMC1052018 DOI: https://doi.org/10.1172/JCI200524531

Xiang AH, Peters RK, Trigo E, Kjos SL, Lee WP, Buchanan TA. Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes mellitus. Diabetes. 1999; 48(4):848-54. https://doi.org/10.2337/diabetes.48.4.848 PMid:10102703 DOI: https://doi.org/10.2337/diabetes.48.4.848

Dinesen S, El-Faitarouni A, Dalgaard LT, Dalgaard LT. Circulating microRNAs associated with gestational diabetes mellitus: useful biomarkers? J Endocrinol. 2023; 256(1). https://doi.org/10.1530/JOE-22-0170 PMid:36346274 DOI: https://doi.org/10.1530/JOE-22-0170

Pillai A, Fulmali D, Fulmali D. A narrative review of new treatment options for diabetic nephropathy. Cureus. 2023; 15(1):e33235. https://doi.org/10.7759/cureus.33235 DOI: https://doi.org/10.7759/cureus.33235

Kanter JE, Bornfeldt KE. Impact of diabetes mellitus. Arterioscler Thromb Vasc Biol. 2016; 36(6):1049-53. https://doi.org/10.1161/ATVBAHA.116.307302 PMid:27225786 PMCid: PMC4972454 DOI: https://doi.org/10.1161/ATVBAHA.116.307302

Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes. 2014; 5(3):393-8. https://doi.org/10.4239/wjd.v5.i3.393 PMid:24936261 PMCid: PMC4058744 DOI: https://doi.org/10.4239/wjd.v5.i3.393

Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress, and diabetic nephropathy. Oxid Med Cell Longev. 2010; 3(2):101-8. https://doi.org/10.4161/oxim.3.2.11148 PMid:20716934 PMCid: PMC2952094 DOI: https://doi.org/10.4161/oxim.3.2.11148

Collins AJ. Cardiovascular mortality in end-stage renal disease. Am J Med Sci. 2003; 325(4):163-7. https://doi.org/10.1097/00000441-200304000-00002 PMid:12695721 DOI: https://doi.org/10.1097/00000441-200304000-00002

Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med. 2000; 160(8):1093-100. https://doi.org/10.1001/archinte.160.8.1093 PMid:10789601 DOI: https://doi.org/10.1001/archinte.160.8.1093

Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5):1047-53. https://doi.org/10.2337/diacare.27.5.1047 PMid:15111519 DOI: https://doi.org/10.2337/diacare.27.5.1047

American Diabetes Association, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care. 2004; 27(Suppl 1):s79-83. https://doi.org/10.2337/diacare.27.2007.S79 PMid:14693934 DOI: https://doi.org/10.2337/diacare.27.2007.S79

Reeves WB, Andreoli TE. Transforming growth factor b contributes to progressive diabetic nephropathy. Proc Natl Acad Sci U S A. Proceedings of the National Academy of Sciences. Proceedings of the NatI Acad sci USA. 2000; 97(14):7667-9. https://doi.org/10.1073/pnas.97.14.7667 PMid:10884396 PMCid: PMC33997 DOI: https://doi.org/10.1073/pnas.97.14.7667

Ayodele OE, Alebiosu CO, Salako BL. Diabetic nephropathy - A review of the natural history, burden, risk factors and treatment. J Natl Med Assoc. 2004; 96(11):1445-54. PMID 15586648. PMCID PMC2568593

Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981; 19(3):410-5. https://doi.org/10.1038/ki.1981.33 PMid:7241881 DOI: https://doi.org/10.1038/ki.1981.33

Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982; 72(3):375-80. https://doi.org/10.1016/0002-9343(82)90490-9 PMid:7036732 DOI: https://doi.org/10.1016/0002-9343(82)90490-9

Fukami K, Yamagishi SI, Ueda S, Okuda S. Role of AGEs in diabetic nephropathy. Curr Pharm Des. 2008; 14(10):946-52. https://doi.org/10.2174/138161208784139710 PMid:18473844 DOI: https://doi.org/10.2174/138161208784139710

Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015; 6(3):120-7. PMID 26644877. PMCID PMC4650785

Dabla PK. Renal function in diabetic nephropathy. World J Diabetes. 2010; 1(2):48-56. https://doi.org/10.4239/wjd.v1.i2.48 PMid:21537427 PMCid: PMC3083882 DOI: https://doi.org/10.4239/wjd.v1.i2.48

Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. Am J Kidney Dis. 1996; 27(2):167-94. https://doi.org/10.1016/S0272-6386(96)90538-7PMid:8659491 DOI: https://doi.org/10.1016/S0272-6386(96)90538-7

Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol. 2005; 16(Suppl 1):S30-3. https://doi.org/10.1681/ASN.2004110970PMid:15938030 DOI: https://doi.org/10.1681/ASN.2004110970

Ruiz-Ortega M, Rodrigues-Diez RR, Lavoz C, Rayego-Mateos S. Special Issue “Diabetic Nephropathy: Diagnosis, Prevention and Treatment”. J Clin Med. 2020; 9(3):813. https://doi.org/10.3390/jcm9030813 PMid:32192024 PMCid: PMC7141346 DOI: https://doi.org/10.3390/jcm9030813

Remuzzi G, Schieppati A, Ruggenenti P. Nephropathy in patients with type-2 diabetes. N Engl J Med. 2002; 346(15):1145-51. https://doi.org/10.1056/NEJMcp011773 PMid:11948275 DOI: https://doi.org/10.1056/NEJMcp011773

Ritz E, Zeng XX, Rychlík I. Clinical manifestation, and natural history of diabetic nephropathy. Diabetes Kidney. 2011; 170:19-27. https://doi.org/10.1159/000324939 PMid:21659754 DOI: https://doi.org/10.1159/000324939

Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015; 6(3):120-7. PMID 26644877 PMCID PMC4650785

Guo J, Zheng W, Liu Y, Zhou M, Shi Y, Lei M, et al. Long non-coding RNA DLX6-AS1 is the key mediator of glomerular podocyte injury and albuminuria in diabetic nephropathy by targeting the miR-346/GSK-3β signalling pathway. Cell Death Dis. 2023; 14(2):172. https://doi.org/10.1038/s41419-023-05695-2 PMid:36854759 PMCid: PMC9975222 DOI: https://doi.org/10.1038/s41419-023-05695-2

John S. Complication in diabetic nephropathy. Diabetes Metab Syndr Clin Res Rev. 2016; 10(4):247-9. https://doi.org/10.1016/j.dsx.2016.06.005 PMid:27389078 DOI: https://doi.org/10.1016/j.dsx.2016.06.005

Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed Res Int. 2021; 2021:1497449. https://doi.org/10.1155/2021/1497449 PMid:34307650 PMCid: PMC8285185 DOI: https://doi.org/10.1155/2021/1497449

Shahin DH, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, et al. Insights into the uses of traditional plants for diabetes nephropathy: a review. Curr Issues Mol Biol. 2022; 44(7):2887-902. https://doi.org/10.3390/cimb44070199 PMid:35877423 PMCid: PMC9316237 DOI: https://doi.org/10.3390/cimb44070199

Abdelgawad SM, Hetta MH, Ibrahim MA, Fawzy GA, El-Askary HI, Ross SA. A holistic overview of the phytoconstituents and pharmacological activities of Egyptian Riverhemp [Sesbania sesban (L.) Merr.]: A review. Nat Prod Commun. 2023; 18(3):1934578X231160882. https://doi.org/10.1177/1934578X231160882 DOI: https://doi.org/10.1177/1934578X231160882

Gomase PV. Sesbania sesban Linn: A review on its ethnobotany, phytochemical and pharmacological profile. Asian J Biomed PharmSci. 2012; 2(12):11.

Pandhare RB, Sangameswaran B, Mohite PB, Khanage SG. Aqueous extracts of the leaves of Sesbania sesban reduces the development of diabetic nephropathy in streptozotocin-induced diabetic rat. Bangladesh J Pharmacol. 2010; 5(2):103-6. https://doi.org/10.3329/bjp.v5i2.7592 DOI: https://doi.org/10.3329/bjp.v5i2.7592

Owoyele BV, Owolabi GO. Traditional oil palm (Elaeis guineensis jacq.) and its medicinal uses: a review. CELLMED. 2014; 4(3):e16. https://doi.org/10.5667/tang.2014.0004 DOI: https://doi.org/10.5667/tang.2014.0004

Varatharajan R, Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA. Antioxidant and pro-oxidant effects of oil palm (Elaeis guineensis) leaves extract in experimental diabetic nephropathy: a duration-dependent outcome. BMC Complement Altern Med. 2013; 13(1):242. https://doi.org/10.1186/1472-6882-13-242 PMid:24074026 PMCid: PMC3829664 DOI: https://doi.org/10.1186/1472-6882-13-242

Anand M, Basavaraju R. A review on phytochemistry and pharmacological uses of Tecoma stans (L.) Juss. ex Kunth. J Ethnopharmacol. 2021; 265:113270. https://doi.org/10.1016/j.jep.2020.113270 PMid:32822823 DOI: https://doi.org/10.1016/j.jep.2020.113270

Gupta A, Behl T, Sehgal A, Singh S, Sharma N, Yadav S, et al. Elucidating the neuroprotective Effect of Tecoma stans Leaf Extract in STZ-Induced Diabetic Neuropathy. Evid Based Complement Alternat Med. 2022; 2022:3833392. https://doi.org/10.1155/2022/3833392 PMid:35795278 PMCid: PMC9251095 DOI: https://doi.org/10.1155/2022/3833392

Kumar S, Yadav JP. Ethnobotanical and pharmacological properties of Aloe vera: A review. J Med Plants Res. 2014; 48(8):1387-98.

Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological update properties of Aloe vera and its major active constituents. Molecules. 2020; 25(6):1324. https://doi.org/10.3390/molecules25061324 PMid:32183224 PMCid: PMC7144722 DOI: https://doi.org/10.3390/molecules25061324

Dangi NB, Gyanwali M, Gyanwali P, Sapkota HP, Pandey A, Shrestha A. Evaluation of aloe vera leaves extract in streptozotocin-induced diabetic nephropathy in the rat. J Chitwan Med Coll. 2015; 5(4):55-63. https://doi.org/10.3126/jcmc.v5i4.16555 DOI: https://doi.org/10.3126/jcmc.v5i4.16555

Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 2008; 46(2):409-20. https://doi.org/10.1016/j.fct.2007.09.085PMid:17950516 DOI: https://doi.org/10.1016/j.fct.2007.09.085

Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed Pharmacother. 2018; 106:381-9. https://doi.org/10.1016/j.biopha.2018.06.148 PMid:29966984 DOI: https://doi.org/10.1016/j.biopha.2018.06.148

Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Alternat Med. 2015; 2015:541591. https://doi.org/10.1155/2015/541591 PMid:25802541 PMCid: PMC4352757 DOI: https://doi.org/10.1155/2015/541591

Al-Attar AM, Alsalmi FA. Effect of Olea europaea leaves extract on streptozotocin-induced diabetes in male albino rats. Saudi J Biol Sci. 2019; 26(1):118-28. https://doi.org/10.1016/j.sjbs.2017.03.002 PMid:30622415 PMCid: PMC6318816 DOI: https://doi.org/10.1016/j.sjbs.2017.03.002

Yadav VK, Irchhiaya R, Ghosh AK. Phytochemical and pharmacognostic studies of Anogeissus acuminata. J Drug Deliv Ther. 2019; 9:450-7(4-A). https://doi.org/10.22270/jddt.v9i4-A.3507 DOI: https://doi.org/10.22270/jddt.v9i4-A.3507

Navale AM, Paranjape A. Antidiabetic and renoprotective effect of Anogeissus acuminata leaf extract on experimentally induced diabetic nephropathy. J Basic Clin Physiol Pharmacol. 2018; 29(4):359-64. https://doi.org/10.1515/jbcpp-2017-0190 PMid:29617268 DOI: https://doi.org/10.1515/jbcpp-2017-0190

Panth N, Paudel KR, Karki R. Phytochemical profile and biological activity of Juglans regia. J Integr Med. 2016; 14(5):359-73. https://doi.org/10.1016/S2095-4964(16)60274-1 PMid:27641607 DOI: https://doi.org/10.1016/S2095-4964(16)60274-1

Nasiry D, Khalatbary AR, Ahmadvand H, Talebpour Amiri FT. Juglans regia L. leaf extract attenuates diabetic nephropathy progression in experimental diabetes: an immunohistochemical study. Iran J Med Sci. 2019; 44(1):44-52. PMID 30666075.

Rapuru R, Bathula S, Kaliappan I. Phytochemical constituents and pharmacological activities of strawberry. In: Strawberries. IntechOpen; 2022. https://doi.org/10.5772/intechopen.103973 PMid:37547003 PMCid: PMC10402039 DOI: https://doi.org/10.5772/intechopen.103973

Ibrahim DS, Abd El-Maksoud MA. Effect of strawberry (Fragaria ananassa) leaf extract on diabetic nephropathy in rats. Int J Exp Pathol. 2015; 96(2):87-93. https://doi.org/10.1111/iep.12116 PMid:25645466 PMCid:PMC4459800 DOI: https://doi.org/10.1111/iep.12116

Mohanta TK, Tamboli Y, Zubaidha PK. Phytochemical, and medicinal importance of Ginkgo biloba L. Nat Prod Res. 2014; 28(10):746-52. https://doi.org/10.1080/14786419.2013.879303 PMid:24499319 DOI: https://doi.org/10.1080/14786419.2013.879303

Yu X, Su Q, Geng J, Liu H, Liu Y, Liu J, et al. Ginkgo biloba leaf extract prevents diabetic nephropathy through the suppression of tissue transglutaminase. Exp Ther Med. 2021; 21(4):333. https://doi.org/10.3892/etm.2021.9764 PMid:33732306 PMCid: PMC7903480 DOI: https://doi.org/10.3892/etm.2021.9764

USMANI QI, Ahmad A, Jamaldeen FN. Laurus nobilis L., (Habb-ul-Ghar), A Review on phytochemistry, pharmacology and ethnomedicinal uses. J Drug Deliv Ther. 2021; 11(5):136-44. https://doi.org/10.22270/jddt.v11i5.5021 DOI: https://doi.org/10.22270/jddt.v11i5.5021

Anzano A, de Falco B, Grauso L, Motti R, Lanzotti V. Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem Rev. 2022; 21(2):565-615. https://doi.org/10.1007/s11101-021-09791-z DOI: https://doi.org/10.1007/s11101-021-09791-z

Mohammed RR, Omer AK, Yener Z, Uyar A, Ahmed AK. Biomedical effects of Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: experimental research. Ann Med Surg (Lond). 2021; 61:188-97. https://doi.org/10.1016/j.amsu.2020.11.051 PMid:33520200 PMCid: PMC7817776 DOI: https://doi.org/10.1016/j.amsu.2020.11.051

Akpotu A, Ani C, Agiopu T, Okeke A, Agu F, Ugwuchukwu N, et al. Phytochemical and in vitro antioxidant properties of ethyl acetate leave extract of Dryopteris dilatata on Wistar rats. Afr J Biotechnol. 2021; 20(8):318-24. https://doi.org/10.5897/AJB2021.17339 DOI: https://doi.org/10.5897/AJB2021.17339

Asiwe JN, Moke EG, Asiwe N, Yovwin GD, Nwogueze BC, Daubry TME. Dryopteris dilatata leaf extract ameliorates streptozotocin-induced diabetic nephropathy in male Wistar rats. Nutrire. 2022; 48(1):1. https://doi.org/10.1186/s41110-022-00186-4 DOI: https://doi.org/10.1186/s41110-022-00186-4

Paikra BK, Dhongade HKJ, Gidwani B. Phytochemistry and pharmacology of Moringa oleifera Lam. J Pharmacopuncture. 2017; 20(3):194-200. https://doi.org/10.3831/KPI.2017.20.022 PMid:30087795 PMCid: PMC5633671 DOI: https://doi.org/10.3831/KPI.2017.20.022

Thongrung R, Senggunprai L, Hipkaeo W, Tangsucharit P, Pannangpetch P. Anti-angiogenesis, and anti-inflammatory effects of Moringa oleifera leaf extract in the early stages of streptozotocin-induced diabetic nephropathy in rats. Asian Pac J Trop Biomed. 2022; 12(7):290. https://doi.org/10.4103/2221-1691.350177 DOI: https://doi.org/10.4103/2221-1691.350177

Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: a review. Biomed Pharmacother. 2022; 153:113256. https://doi.org/10.1016/j.biopha.2022.113256 PMid:36076615 DOI: https://doi.org/10.1016/j.biopha.2022.113256

Mestry SN, Dhodi JB, Kumbhar SB, Juvekar AR. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J Trad Complement Med. 2017; 7(3):273-80. https://doi.org/10.1016/j.jtcme.2016.06.008 PMid:28725620 PMCid: PMC5506633 DOI: https://doi.org/10.1016/j.jtcme.2016.06.008

Lei Z, Chen X, Cao F, Guo Q, Wang J. Phytochemicals, and bioactivities of Goji (Lycium barbarum L. and Lycium chinense Mill.) leaves and their potential applications in the food industry: a review. Int J Food Sci Technol. 2022; 57(3):1451-61. https://doi.org/10.1111/ijfs.15507 DOI: https://doi.org/10.1111/ijfs.15507

Olatunji OJ, Chen H, Zhou Y. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation. Biomed Pharmacother. 2018; 102:1145-51. https://doi.org/10.1016/j.biopha.2018.03.037 PMid:29710532 DOI: https://doi.org/10.1016/j.biopha.2018.03.037

Gonfa YH, Beshah F, Tadesse MG, Bachheti A, Bachheti RK. Phytochemical investigation and potential pharmacologically active compounds of Rumex nepalensis: an appraisal. Beni Suef Univ J Basic Appl Sci. 2021; 10(1):1. https://doi.org/10.1186/s43088-021-00110-1 DOI: https://doi.org/10.1186/s43088-021-00110-1

AlMousa LA, AlFaris NA, Alshammari GM, Alsayadi MM, ALTamimi JZ, Alagal RI, et al. Rumex nervosus could alleviate streptozotocin-induced diabetic nephropathy in rats by activating Nrf2 signalling. Sci Prog. 2022; 105(2): 00368504221102751:368504221102751. https://doi.org/10.1177/00368504221102751 PMid:35619568 PMCid: PMC10358522 DOI: https://doi.org/10.1177/00368504221102751

Adhikari B, Aryal B, Bhattarai BR. A comprehensive review of the chemical composition and pharmacological activities of Acacia catechu (Lf) Willed. J Chem. 2021; 2021:1. https://doi.org/10.1155/2021/2575598 DOI: https://doi.org/10.1155/2021/2575598

D’souza P, Holla R, Swamy G. Amelioration of diabetic nephropathy in streptozotocin-induced diabetic rats by Acacia catechu leaves extract. J Health Allied Sci Nu. 2019; 09(3):116-20. https://doi.org/10.1055/s-0039-3402084 DOI: https://doi.org/10.1055/s-0039-3402084

Junior JI, Ferreira MR, de Oliveira AM, Soares LA. Croton sp.: A review about popular uses, biological activities and chemical composition. Res Soc Dev. 2022; 11(2): e57311225306. https://doi.org/10.33448/rsd-v11i2.25306 DOI: https://doi.org/10.33448/rsd-v11i2.25306

Kundu A, Dey P, Sarkar P, Karmakar S, Tae IH, Kim KS, et al. Protective effects of Croton hookeri on streptozotocin-induced diabetic nephropathy. Food Chem Toxicol. 2020; 135:110873. https://doi.org/10.1016/j.fct.2019.110873 PMid:31600566 DOI: https://doi.org/10.1016/j.fct.2019.110873

Shahinozzaman M, Obanda DN, Tawata S. Chemical composition and pharmacological properties of Macaranga‐type Pacific propolis: a review. Phytother Res. 2021; 35(1):207-22. https://doi.org/10.1002/ptr.6819 PMid:32776610 DOI: https://doi.org/10.1002/ptr.6819

Hsu YC, Chang CC, Hsieh CC, Shih YH, Chang HC, Lin CL. Therapeutic potential of extracts from Macaranga Tanarius (MTE) in diabetic nephropathy. Plants (Basel). 2023; 12(3):656. https://doi.org/10.3390/plants12030656 PMid:36771740 PMCid: PMC9920382 DOI: https://doi.org/10.3390/plants12030656

Dey P, Mukherjee M, Bhakta T, Ghosh TK. Preliminary phytochemical studies of leaf extracts of Molineria recurvata. J Chem Pharm Res. 2012; 4(7):3727-0.

Wang Y, Li J, Li N. Phytochemistry and pharmacological activity of plants of genus Curculigo: an updated review since 2013. Molecules. 2021; 26(11):3396. https://doi.org/10.3390/molecules26113396 PMid:34205154 PMCid: PMC8199960 DOI: https://doi.org/10.3390/molecules26113396

Dey P, Kundu A, Lee HE, Kar B, Vishal V, Dash S, et al. Molineria recurvata ameliorates streptozotocin-induced diabetic nephropathy through antioxidant and anti-inflammatory pathways. Molecules. 2022; 27(15):4985. https://doi.org/10.3390/molecules27154985 PMid:35956936 PMCid: PMC9370403 DOI: https://doi.org/10.3390/molecules27154985

Hu Q, Qu C, Xiao X, Zhang W, Jiang Y, Wu Z, et al. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chin Med. 2021; 16(1):74. https://doi.org/10.1186/s13020-021-00485-4 PMid:34364389 PMCid: PMC8349014 DOI: https://doi.org/10.1186/s13020-021-00485-4

Putra IMWA, Fakhruddin N, Nurrochmad A, Wahyuono S. A review of medicinal plants with renoprotective activity in diabetic nephropathy animal models. Life (Basel). 2023; 13(2):560. https://doi.org/10.3390/life13020560 PMid:36836916 PMCid: PMC9963806 DOI: https://doi.org/10.3390/life13020560

Most read articles by the same author(s)

1 2 > >>