A Review on Probiotic and Microbiota Modulation: A Promising Nutraceutical in the Management of Neurodegenerative and Psychiatric Conditions
DOI:
https://doi.org/10.18311/jnr/2023/33944Keywords:
Microbiota, Neurodegenerative Disease, Pharmacology, Probiotics, Psychiatric DiseaseAbstract
Microbes as probiotics were found to provide the host with health benefits when given in proper doses. Researches are going on to analyze the positive relation of probiotics on digestive health including the changes in the microbial populations in the gut. The immune, nervous, and endocrine system are some of the locations outside of the gut that is affected by probiotics. The study focussed on the potential impact of the “microbiota-gut-brain axis” on CNS-related functions. The role of probiotics is highlighted in our study for the control of a number of CNS illnesses, including Alzheimer’s disease, anxiety, obsessive-compulsive disorder, etc. This review also provides an overview of some clinically proven commercial probiotics and clinical studies reporting the impact of probiotics augmentation in cognition and symptoms in individuals with severe neurological and psychiatric illnesses.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Anmol Kanda, Avijit Mazumder, Saumya Das, Vishnu Prabhakar (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-18
Published 2023-11-08
References
Rao M, Gershon MD. Enteric nervous system development: What could possibly go wrong?. Nature Reviews Neuroscience. 2018; 19(9):552-65. https://doi.org/10.1038/s41583-018-0041-0 DOI: https://doi.org/10.1038/s41583-018-0041-0
Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology. 2021; 19(4):241-55. https://doi.org/10.1038/s41579-020-00460-0 DOI: https://doi.org/10.1038/s41579-020-00460-0
Musso G, Gambino R, Cassader M. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: Mechanisms and implications for metabolic disorders. Current Opinion in Lipidology. 2010; 21(1):76-83. https://doi.org/10.1097/MOL.0b013e3283347ebb DOI: https://doi.org/10.1097/MOL.0b013e3283347ebb
Needham BD, Kaddurah-Daouk R, Mazmanian SK. Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews Neuroscience. 2020; 21(12):717-31. https://doi.org/10.1038/s41583-020-00381-0 DOI: https://doi.org/10.1038/s41583-020-00381-0
Raval U, Harary JM, Zeng E, Pasinetti GM. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Review of Neurotherapeutics. 2020; 20(7):673-86. https://doi.org/10.1080/14737175.2020.1775585 DOI: https://doi.org/10.1080/14737175.2020.1775585
Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering. 2017; 3(1):71-82. https://doi.org/10.1016/J.ENG.2017.01.008 DOI: https://doi.org/10.1016/J.ENG.2017.01.008
Luca M, Di Mauro M, Di Mauro M, Luca A. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: The role of oxidative stress. Oxidative medicine and cellular longevity. 2019; 2019. https://doi.org/10.1155/2019/5698132 DOI: https://doi.org/10.1155/2019/5698132
Cox LM, Schafer MJ, Sohn J, Vincentini J, Weiner HL, Ginsberg SD, et al. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Scientific Reports. 2019; 9(1):1-4. https://doi.org/10.1038/s41598-019-54187-x DOI: https://doi.org/10.1038/s41598-019-54187-x
Dupont JR, Jervis HR, Sprinz H. Auerbach’s plexus of the rat cecum in relation to the germfree state. Journal of Comparative Neurology. 1965; 125(1):11-8. https://doi.org/10.1002/cne.901250103 DOI: https://doi.org/10.1002/cne.901250103
Neufeld KAM, Mao YK, Bienenstock J, Foster JA, Kunze WA. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility. 2013; 25(2):183-e88. https://doi.org/10.1111/nmo.12049 DOI: https://doi.org/10.1111/nmo.12049
Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009; 136(6):2003-14. https://doi.org/10.1053/j.gastro.2009.01.075 DOI: https://doi.org/10.1053/j.gastro.2009.01.075
Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology. 2012; 10(11):735-42. https://doi.org/10.1038/nrmicro2876 DOI: https://doi.org/10.1038/nrmicro2876
Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015; 85(2):289-95. https://doi.org/10.1016/j.neuron.2014.12.037 DOI: https://doi.org/10.1016/j.neuron.2014.12.037
Baird AD. Exstrophy in the adolescent and young adult population. Seminars in Pediatric Surgery. WB Saunders; 2011. p. 109-112. https://doi.org/10.1053/j.sempedsurg.2010.12.006 DOI: https://doi.org/10.1053/j.sempedsurg.2010.12.006
Booth DM, Murphy JA, Mukherjee R, Awais M, Neoptolemos JP, Gerasimenko OV, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology. 2011; 140(7):2116-25. https://doi.org/10.1053/j.gastro.2011.02.054 DOI: https://doi.org/10.1053/j.gastro.2011.02.054
Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine. 2014; 6(263). https://doi.org/10.1126/scitranslmed.3009759 DOI: https://doi.org/10.1126/scitranslmed.3009759
Xu D, Gao J, Gillilland M, Wu X, Song I, Kao JY, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 2014; 146(2):484-96. https://doi.org/10.1053/j.gastro.2013.10.026 DOI: https://doi.org/10.1053/j.gastro.2013.10.026
Llopis M, Antolin M, Carol M, Borruel N, Casellas F, Martinez C, et al. Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflammatory bowel diseases. 2009; 15(2):275-83. https://doi.org/10.1002/ibd.20736 DOI: https://doi.org/10.1002/ibd.20736
Yano MJ, Yu K, Donaldson G, Shastri G. Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015; 161(2):264-76. https://doi.org/10.1016/j.cell.2015.02.047 DOI: https://doi.org/10.1016/j.cell.2015.02.047
Zhengkang H, Wang G, Yao W, Zhu WY. Isoflavonic phytoestrogens-new prebiotics for farm animals: A review on research in China. Current Issues in Intestinal Microbiology. 2006; 7(2):53-60.
Zhuo-Teng Y, Yao W, Wei-Yun Z. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiology Letters. 2008; 282(1):73-80. https://doi.org/10.1111/j.1574-6968.2008.01108.x DOI: https://doi.org/10.1111/j.1574-6968.2008.01108.x
Yu W, Wang Y, Zhou DX, Zhao LM, Li GR, Deng XL. Equol is neuroprotective during focal cerebral ischemia and reperfusion that involves p-Src and gp91phox. Current Neurovascular Research. 2014; 11(4):367-77. https://doi.org/10.2174/1567202611666140908094517 DOI: https://doi.org/10.2174/1567202611666140908094517
Kennedy DO. Polyphenols and the human brain: Plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Advances in Nutrition. 2014; 5(5):515-33. https://doi.org/10.3945/an.114.006320 DOI: https://doi.org/10.3945/an.114.006320
Cryan JF, O’Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, et al. The microbiota-gut-brain axis. Physiological Reviews. 2019. https://doi.org/10.1152/physrev.00018.2018 DOI: https://doi.org/10.1152/physrev.00018.2018
Browning JS, Houseworth JH. Development of new symptoms following medical and surgical treatment for duodenal ulcer. Psychosomatic Medicine. 1953; 15(4):328-36. https://doi.org/10.1097/00006842-195307000-00006 DOI: https://doi.org/10.1097/00006842-195307000-00006
Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, Sørensen HT. Vagotomy and subsequent risk of Parkinson’s disease. Annals of Neurology. 2015; 78(4):522-529. https://doi.org/10.1002/ana.24448 DOI: https://doi.org/10.1002/ana.24448
Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M. Mechanisms underlying microbial-bediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019; 101(2):246-59. https://doi.org/10.1016/j.neuron.2018.11.018 DOI: https://doi.org/10.1016/j.neuron.2018.11.018
Ropelle ER, da Silva ASR, Cintra DE, de Moura LP, Teixeira AM, Pauli JP. Physical exercise: A versatile anti-inflammatory tool involved in the control of hypothalamic satiety signaling. Exercise Immunology Review. 2021; 27.
El-Ansary AK, Bacha AB, Kotb M. Etiology of autistic features: The persisting neurotoxic effects of propionic acid. Journal of Neuroinflammation. 2012; 9:1-14. https://doi.org/10.1186/1742-2094-9-74 DOI: https://doi.org/10.1186/1742-2094-9-74
Skonieczna-Żydecka K, Grochans E, Maciejewska D, Szkup M, Schneider-Matyka D, Jurczak A, et al. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients. 2018; 10(12):1939. https://doi.org/10.3390/nu10121939 DOI: https://doi.org/10.3390/nu10121939
Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the force be with you: The light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs. 2016; 30(11):1019-1041. https://doi.org/10.1007/s40263-016-0370-3 DOI: https://doi.org/10.1007/s40263-016-0370-3
Lim PS, Chang YK, Wu TK. Serum lipopolysaccharide-binding protein is associated with chronic inflammation and metabolic syndrome in hemodialysis patients. Blood purification. 2019; 47(1-3):28-36. https://doi.org/10.1159/000492778 DOI: https://doi.org/10.1159/000492778
Genedi M, Janmaat IE, Haarman BB, Sommer IE. Dysregulation of the gut-brain axis in schizophrenia and bipolar disorder: Probiotic supplementation as a supportive treatment in psychiatric disorders. Current Opinion in Psychiatry. 2019; 32(3):185-195. https://doi.org/10.1097/YCO.0000000000000499 DOI: https://doi.org/10.1097/YCO.0000000000000499
Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophrenia Research. 2013; 148(1-3):130-137. https://doi.org/10.1016/j.schres.2013.05.018 DOI: https://doi.org/10.1016/j.schres.2013.05.018
Foster JA, Baker GB, Dursun SM. The relationship between the gut microbiome-immune system-brain axis and major depressive disorder. Frontiers in Neurology. 2021; 12:721126. https://doi.org/10.3389/fneur.2021.721126 DOI: https://doi.org/10.3389/fneur.2021.721126
Carlessi AS, Borba LA, Zugno AI, Quevedo J, Réus GZ. Gut microbiota-brain axis in depression: The role of neuroinflammation. European Journal of Neuroscience. 2021; 53(1):222-235. https://doi.org/10.1111/ejn.14631 DOI: https://doi.org/10.1111/ejn.14631
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: A meta-analysis of 101 studies. Molecular Psychiatry. 2021; 26(8):4158-4178. https://doi.org/10.1038/s41380-020-00951-9 DOI: https://doi.org/10.1038/s41380-020-00951-9
Beaver MH, Wostmann BS. Histamine and 5‐hydroxytryptamine in the intestinal tract of germ‐ free animals, animals harbouring one microbial species and conventional animals. British Journal of Pharmacology and Chemotherapy. 1962; 19(3):385-393. https://doi.org/10.1111/j.1476-5381.1962.tb01443.x DOI: https://doi.org/10.1111/j.1476-5381.1962.tb01443.x
Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clinical Nutrition. 2019; 38(2):522-528. https://doi.org/10.1016/j.clnu.2018.04.010 DOI: https://doi.org/10.1016/j.clnu.2018.04.010
Purton T, Staskova L, Lane MM, Dawson SL, West M, Firth J, et al. Prebiotic and probiotic supplementation and the tryptophan-kynurenine pathway: A systematic review and meta analysis. Neuroscience and Biobehavioral Reviews. 2021; 123:1-3. https://doi.org/10.1016/j.neubiorev.2020.12.026 DOI: https://doi.org/10.1016/j.neubiorev.2020.12.026
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ‐Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology. 2012; 113(2):411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.x DOI: https://doi.org/10.1111/j.1365-2672.2012.05344.x
Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011; 108(38):16050-16055. https://doi.org/10.1073/pnas.1102999108 DOI: https://doi.org/10.1073/pnas.1102999108
Bhatia NY, Jalgaonkar MP, Hargude AB, Sherje AP, Oza MJ, et al. Gut-brain axis and neurological disorders-how microbiomes affect our mental health. CNS and Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS and Neurological Disorders). 2022. https://doi.org/10.2174/1871527321666220822172039 DOI: https://doi.org/10.2174/1871527321666220822172039
Cheon MJ, Lim SM, Lee NK, Paik HD. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. International Journal of Molecular Sciences. 2020; 21(4):1227. https://doi.org/10.3390/ijms21041227 DOI: https://doi.org/10.3390/ijms21041227
Kovalenko TN, Ushakova GA, Osadchenko I, Skibo GG, Pierzynowski SG. The neuroprotective effect of 2-oxoglutarate in the experimental ischemia of hippocampus. Journal of Physiology and Pharmacology. 2011; 62(2):239.
Villena J, Suzuki R, Fujie H, Chiba E, Takahashi T, Tomosada Y, et al. Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigen-presenting cells. Clinical and Vaccine Immunology. 2012; 19(7):1038-1053. https://doi.org/10.1128/CVI.00199-12 DOI: https://doi.org/10.1128/CVI.00199-12
Kumar MR, Azizi NF, Yeap SK, Abdullah JO, Khalid M, Omar AR, et al. Clinical and preclinical studies of fermented foods and their effects on Alzheimer’s disease. Antioxidants. 2022; 11(5):883. https://doi.org/10.3390/antiox11050883 DOI: https://doi.org/10.3390/antiox11050883
Yang HJ, Weon JB, Lee B, Ma CJ. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacognosy Magazine. 2011; 7(27):207. https://doi.org/10.4103/0973-1296.84234 DOI: https://doi.org/10.4103/0973-1296.84234
Yoo KY, Hwang IK, Lim BO, Kang TC, Kim DW, Kim SM, et al. Berberry extract reduces neuronal damage and N-Methyl-D-aspartate receptor 1 immunoreactivity in the gerbil hippocampus after transient forebrain ischemia. Biological and Pharmaceutical Bulletin. 2006; 29(4):623-628. https://doi.org/10.1248/bpb.29.623 DOI: https://doi.org/10.1248/bpb.29.623
Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, et al. The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. Journal of Neuroscience. 2008; 28(3):737-48. https://doi.org/10.1523/JNEUROSCI.2824-07.2008 DOI: https://doi.org/10.1523/JNEUROSCI.2824-07.2008
Kumar A, Singh A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports. 2015; 67(2):195-203. https://doi.org/10.1016/j.pharep.2014.09.004 DOI: https://doi.org/10.1016/j.pharep.2014.09.004
Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, et al. Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Frontiers in Neurology. 2018; 9:662. https://doi.org/10.3389/fneur.2018.00662 DOI: https://doi.org/10.3389/fneur.2018.00662
Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, et al. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Molecular Neurobiology. 2018; 55(10):7987-8000. https://doi.org/10.1007/s12035-018-0973-4 DOI: https://doi.org/10.1007/s12035-018-0973-4
Azm SAN, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Applied Physiology, Nutrition, and Metabolism. 2018; 43(7):718-26. https://doi.org/10.1139/apnm-2017-0648 DOI: https://doi.org/10.1139/apnm-2017-0648
Honarpisheh P, Reynolds CR, Conesa MPB, Manchon JFM, Putluri N, Bhattacharjee MB, et al. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. International Journal of Molecular Sciences. 2020; 21(5):1711. https://doi.org/10.3390/ijms21051711 DOI: https://doi.org/10.3390/ijms21051711
Wang F, Xu T, Zhang Y, Zheng T, He Y, He F, et al. Long-term combined administration of Bifidobacterium bifidum TMC3115 and Lactobacillus plantarum 45 alleviates spatial memory impairment and gut dysbiosis in APP/PS1 mice. FEMS Microbiology Letters. 2020; 367(7). https://doi.org/10.1093/femsle/fnaa048 DOI: https://doi.org/10.1093/femsle/fnaa048
Wang QJ, Shen YE, Wang X, Fu S, Zhang X, Zhang YN, et al. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging (albany NY). 2020; 12(1):628. https://doi.org/10.18632/aging.102645 DOI: https://doi.org/10.18632/aging.102645
Yeon SW, You YS, Kwon HS, Yang EH, Ryu JS, Kang BH, et al. Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. Journal of Functional Foods. 2010; 2(2):143-152. https://doi.org/10.1016/j.jff.2010.04.002 DOI: https://doi.org/10.1016/j.jff.2010.04.002
Lee DH, Lee DH, Lee JS. Characterization of a new antidementia β-secretase inhibitory peptide from Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2007; 42(1):83-8. https://doi.org/10.1016/j.enzmictec.2007.08.003 DOI: https://doi.org/10.1016/j.enzmictec.2007.08.003
Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH. Lactobacillus pentosus var. plantarum C29 protects scopolamine‐induced memory deficit in mice. Journal of Applied Microbiology. 2012; 113(6):1498-1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x DOI: https://doi.org/10.1111/j.1365-2672.2012.05437.x
Lee J, Fukumoto H, Orne J, Klucken J, Raju S, Vanderburg CR, et al. Decreased levels of BDNF protein in Alzheimer temporal cortex are independent of BDNF polymorphisms. Experimental neurology. 2005; 194(1):91-96. https://doi.org/10.1016/j.expneurol.2005.01.026 DOI: https://doi.org/10.1016/j.expneurol.2005.01.026
Yoshimura M. Cortical changes in the parkinsonian brain: a contribution to the delineation of “diffuse Lewy body disease”. Journal of Neurology. 1983; 229(1):17-32. https://doi.org/10.1007/BF00313493 DOI: https://doi.org/10.1007/BF00313493
Jenco JM, Rawlingson A, Daniels B, Morris AJ. Regulation of phospholipase D2: Selective inhibition of mammalian phospholipase D isoenzymes by α-and β-synucleins. Biochemistry. 1998; 37(14):4901-4909. https://doi.org/10.1021/bi972776r DOI: https://doi.org/10.1021/bi972776r
Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho WH, Castillo PE, et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000; 25(1):239-252. https://doi.org/10.1016/S0896-6273(00)80886-7 DOI: https://doi.org/10.1016/S0896-6273(00)80886-7
Schapira AH. Dopamine agonists and neuroprotection in Parkinson’s disease. European Journal of Neurology. 2002; 9:7-14. https://doi.org/10.1046/j.1468-1331.9.s3.9.x DOI: https://doi.org/10.1046/j.1468-1331.9.s3.9.x
Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. Journal of Neurochemistry. 2016; 139:318-324. https://doi.org/10.1111/jnc.13691 DOI: https://doi.org/10.1111/jnc.13691
Nishiwaki H, Hamaguchi T, Ito M, Ishida T, Maeda T, Kashihara K, et al. Short-chain fatty acid-producing gut microbiota is decreased in Parkinson’s disease but not in rapid-eye-movement sleep behavior disorder. MSystems. 2020; 5(6):e00797-20. https://doi.org/10.1128/mSystems.00797-20 DOI: https://doi.org/10.1128/mSystems.00797-20
Nuzum ND, Loughman A, Szymlek-Gay EA, Hendy A, Teo WP, Macpherson H. Gut microbiota differences between healthy older adults and individuals with Parkinson’s disease: a systematic review. Neuroscience and Biobehavioral Reviews. 2020; 112:227-241. https://doi.org/10.1016/j.neubiorev.2020.02.003 DOI: https://doi.org/10.1016/j.neubiorev.2020.02.003
Georgescu D, Ancusa OE, Georgescu LA, Ionita I, Reisz D. Nonmotor gastrointestinal disorders in older patients with Parkinson’s disease: is there hope?. Clinical Interventions in Aging. 2016; 11:1601. https://doi.org/10.2147/CIA.S106284 DOI: https://doi.org/10.2147/CIA.S106284
Cassani E, Privitera G, Pezzoli G, Pusani C, Madio C, Iorio L, et al. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva gastroenterologica e dietologica. 2011; 57(2):117-121.
Cassani E, Barichella M, Cancello R, Cavanna F, Iorio L, Cereda E, et al. Increased urinary indoxyl sulfate (indican): New insights into gut dysbiosis in Parkinson’s disease. Parkinsonism and Related Disorders. 2015; 21(4):389-393. https://doi.org/10.1016/j.parkreldis.2015.02.004 DOI: https://doi.org/10.1016/j.parkreldis.2015.02.004
Dobbs, R.J., S.M. Dobbs, C. Weller, et al. 2008. Helicobacter hypothesis for idiopathic parkinsonism: before and beyond. Helicobacter 13: 309-322.https://doi.org/10.1111/j.1523-5378.2008.00622.x DOI: https://doi.org/10.1111/j.1523-5378.2008.00622.x
Çamcı G, Oğuz S. Association between Parkinson›s disease and Helicobacter pylori. Journal of Clinical Neurology. 2016; 12(2):147-150. https://doi.org/10.3988/jcn.2016.12.2.147 DOI: https://doi.org/10.3988/jcn.2016.12.2.147
Hashim H, Azmin S, Razlan H, Yahya NW, Tan HJ, Manaf MR, et al. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One. 2014; 9(11):e112330. https://doi.org/10.1371/journal.pone.0112330 DOI: https://doi.org/10.1371/journal.pone.0112330
Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology. 2007; 73(1):179-185. https://doi.org/10.1128/AEM.01763-06 DOI: https://doi.org/10.1128/AEM.01763-06
Surwase SN, Jadhav JP. Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino acids. 2011; 41(2):495-506. https://doi.org/10.1007/s00726-010-0768-z DOI: https://doi.org/10.1007/s00726-010-0768-z
Dinan TG, Borre YE, Cryan JF. Genomics of schizophrenia: time to consider the gut microbiome?. Molecular Psychiatry. 2014; 19(12):1252-1257. https://doi.org/10.1038/mp.2014.93 DOI: https://doi.org/10.1038/mp.2014.93
Nemani K, Ghomi RH, McCormick B, Fan X. Schizophrenia and the gut-brain axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2015; 56:155-160. https://doi.org/10.1016/j.pnpbp.2014.08.018 DOI: https://doi.org/10.1016/j.pnpbp.2014.08.018
Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2014; 48:277-286. https://doi.org/10.1016/j.pnpbp.2012.10.022 DOI: https://doi.org/10.1016/j.pnpbp.2012.10.022
Okubo R, Koga M, Katsumata N, Odamaki T, Matsuyama S, Oka M, et al. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. Journal of Affective Disorders. 2019; 245:377-385. https://doi. org/10.1016/j.jad.2018.11.011 DOI: https://doi.org/10.1016/j.jad.2018.11.011
Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, et al. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain, behavior, and immunity. 2017; 62:41-45. https://doi.org/10.1016/j.bbi.2016.11.019 DOI: https://doi.org/10.1016/j.bbi.2016.11.019
Tomasik J, Yolken RH, Bahn S, Dickerson FB. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: a randomized, placebo-controlled trial. Biomarker Insights. 2015; 10:BMI-S22007. https://doi.org/10.4137/BMI.S22007 DOI: https://doi.org/10.4137/BMI.S22007
Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CL, Schweinfurth LA, et al. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: A randomized, placebo-controlled trial. The primary care companion for CNS disorders. 2014; 16(1):26294. https://doi.org/10.4088/PCC.13m01579 DOI: https://doi.org/10.4088/PCC.13m01579
Dokuyucu R, Kokacya H, Inanir S, Copoglu US, Erbas O. Antipsychotic-like effect of minocycline in a rat model. International Journal of Clinical and Experimental Medicine. 2014; 7(10):3354.
Jhamnani K, Shivakumar V, Kalmady S, Rao NP, Venkatasubramanian G. Successful use of add-on minocycline for treatment of persistent negative symptoms in schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences. 2013; 25(1):E06-E07. https://doi.org/10.1176/appi.neuropsych.11120376 DOI: https://doi.org/10.1176/appi.neuropsych.11120376
Gelenberg AJ, Freeman MP, Markowitz JC, Rosenbaum JF, Thase ME, Trivedi MH, et al. American Psychiatric Association practice guidelines for the treatment of patients with major depressive disorder. American Journal of Psychiatry. 2010; 167(Suppl 10):9-118.
Gruenberg AM. Manic-depressive illness: Bipolar disorders and recurrent depression, by FK Goodwin and KR Jamison.(Pp. 1288; $99.00; ISBN 0195135794.) Oxford University Press: New York. 2007. Psychological Medicine. 2008; 38(1):147-148. https://doi.org/10.1017/S0033291707001936 DOI: https://doi.org/10.1017/S0033291707001936
Gitlin MJ, Swendsen J, Heller TL, Hammen C. Relapse and impairment in bipolar disorder. The American Journal of Psychiatry. 1995.
Dickerson F, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C, et al. Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: a randomized controlled trial. Bipolar Disorders. 2018; 20(7):614-621. https://doi.org/10.1111/bdi.12652 DOI: https://doi.org/10.1111/bdi.12652
Reininghaus EZ, Wetzlmair LC, Fellendorf FT, Platzer M, Queissner R, Birner A, et al. The impact of probiotic supplements on cognitive parameters in euthymic individuals with bipolar disorder: A pilot study. Neuropsychobiology. 2020; 79(1-2):63-70. https://doi.org/10.1159/000492537 DOI: https://doi.org/10.1159/000492537
McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Molecular Psychiatry. 2022; 27(4):1920-1935. https://doi.org/10.1038/s41380-022-01456-3 DOI: https://doi.org/10.1038/s41380-022-01456-3
Nemeroff CB. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacology Bulletin. 2003; 37(4):133-146.
Gallo AT, Hulse GK. A theory of the anxiolytic action of flumazenil in anxiety disorders. Journal of Psychopharmacology. 2022. DOI: https://doi.org/10.1177/02698811221082466
Swartz M, Landerman R, George LK, Melville ML, Blazer D, Smith K. Benzodiazepine anti-anxiety agents: prevalence and correlates of use in a southern community. American Journal of Public Health. 1991; 81(5):592-596. https://doi.org/10.2105/AJPH.81.5.592 DOI: https://doi.org/10.2105/AJPH.81.5.592
Reis DJ, Ilardi SS, Punt SE. The anxiolytic effect of probiotics: A systematic review and meta-analysis of the clinical and preclinical literature. PloS One. 2018; 13(6):e0199041. https://doi.org/10.1371/journal.pone.0199041 DOI: https://doi.org/10.1371/journal.pone.0199041
Foster JA, Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in neurosciences. 2013; 36(5):305-312. https://doi.org/10.1016/j.tins.2013.01.005 DOI: https://doi.org/10.1016/j.tins.2013.01.005
Hadizadeh M, Hamidi GA, Salami M. Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iranian Journal of Basic Medical Sciences. 2019; 22(5):506.
Eskandarzadeh S, Effatpanah M, Khosravi-Darani K, Askari R, Hosseini AF, Reisian M, et al. Efficacy of a multispecies probiotic as adjunctive therapy in generalized anxiety disorder: A double blind, randomized, placebo-controlled trial. Nutritional Neuroscience. 2021; 24(2):102-108. https://doi.org/10.1080/1028415X.2019.1598669 DOI: https://doi.org/10.1080/1028415X.2019.1598669