Nephroprotective Plants in Ayurveda: A Comprehensive Review

Jump To References Section

Authors

  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia - 391760, Vadodara, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia - 391760, Vadodara, Gujarat ,IN
  • Faculty of Pharmacy, Vishwakarma University, Survey No 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune - 411048, Maharashtra ,IN
  • Manoj Jain Memorial College of Pharmacy, Satna - 485001, Madhya Pradesh ,IN

DOI:

https://doi.org/10.18311/jnr/2024/36555

Keywords:

Ayurveda, Chronic Kidney Disease, Herbal Medicine, Nephroprotective, Traditional Knowledge

Abstract

Renal diseases, particularly nephrotoxicity, pose a significant threat to human health, often stemming from exposure to medications or toxins. Acute renal failure, resulting from factors such as heart failure, hypoxia, antibiotics, chemotherapy, and non-steroidal anti-inflammatory drugs, presents a critical health challenge with a high mortality rate. This review involves the potential of medicinal plants, known for their antioxidant properties, in preventing and treating kidney disorders. This article provides a thorough exploration of nephroprotective plants, including insights into their mechanism of action, active phytoconstituents, sources, and potential utilizations. The aim is to contribute to a comprehensive understanding of traditional medicinal practices and their relevance in addressing the complexities of kidney-related issues.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-06-30

How to Cite

Kumari, M., Sadhu, P., Talele, D., & Pandey, A. (2024). Nephroprotective Plants in <i>Ayurveda</i>: A Comprehensive Review. Journal of Natural Remedies, 24(6), 1219–1229. https://doi.org/10.18311/jnr/2024/36555

Issue

Section

Short Review

Categories

Received 2024-02-13
Accepted 2024-05-02
Published 2024-06-30

 

References

Al-Snafi AE, Talab TA. A review of medicinal plants with nephroprotective effects. GSC Biol Pharm Sci. 2019; 8(1):114-22. https://doi.org/10.30574/gscbps.2019.8.1.0108

Molaei E, Molaei A, Abedi F, Hayes AW, Karimi G. Nephroprotective activity of natural products against chemical toxicants: The role of Nrf2/ARE signaling pathway. Food Sci Nutr. 2021; 9(6):3362-84. https://doi.org/10.1002/fsn3.2320

Dhondup T, Qian Q. Acid-base and electrolyte disorders in patients with and without chronic kidney disease: an update. Kidney Diseases. 2017; 3(4):136-48. https://doi.org/10.1159/000479968

Basist P, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, et al. Potential nephroprotective phytochemicals: Mechanism and future prospects. J Ethnopharmacol. 2022; 283:114743. https://doi.org/10.1016/j.jep.2021.114743

Konda VR, Arunachalam R, Eerike M, Radhakrishnan AK, Raghuraman LP, Meti V, et al. Nephroprotective effect of ethanolic extract of Azima tetracantha root in glycerol induced acute renal failure in Wistar albino rats. J Tradit Complement Med. 2016; 6(4):347-54. https://doi.org/10.1016/j.jtcme.2015.05.001

Yang C, Yang B. Acute kidney injury in China: A neglected truth and perspective. Asian J Urol. 2016; 3(1):4. https://doi.org/10.1016/j.ajur.2015.11.001

Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 2018; 96(6):414. https://doi.org/10.2471/BLT.17.206441

Negi K, Mirza A. Nephroprotective and therapeutic potential of traditional medicinal plants in renal diseases. J Drug Res Ayurvedic Sciences. 2020; 5(3):177-85. https://doi.org/10.5005/jdras-10059-0079

Makris K, Spanou L. Acute kidney injury: definition, pathophysiology, and clinical phenotypes. Clin Biochem Rev. 2016; 37(2):85.

Sujana D, Saptarini NM, Sumiwi SA, Levita J. Nephroprotective activity of medicinal plants: A review on in silico-, in vitro-, and in vivo-based studies. J Appl Pharm Sci. 2021; 11(10):113-27. https://doi.org/10.7324/JAPS.2021.1101016

Srinivasan N, Dhanalakshmi S, Pandian P. Encouraging leads from marine sources for cancer therapy a review approach. Pharmacogn J. 2020; 12(6). https://doi.org/10.5530/pj.2020.12.202

Kumar A, D’Souza P, Bhargavan D. Evaluation of renal protective activity of Adhatoda zeylanica (medic) leaves extract in Wistar rats. JHAS NU. 2013; 3(04):045-56. https://doi.org/10.1055/s-0040-1703701

D’souza PS, Holla R, Swamy G. Effect of Adhatoda zeylanica ethanolic extract on attenuated kidney in streptozotocin-induced diabetic rats. J Health Allied Sci NU. 2021; 11(02):073-9. https://doi.org/10.1055/s-0040-1722801

Mossoba ME, Flynn TJ, Vohra SN, Wiesenfeld PL, Sprando RL. In vitro exposure of Adhatoda zeylanica to human renal cells lacks acute toxicity. Toxicol. 2016; 3:15-20. https://doi.org/10.1016/j.toxrep.2015.11.005

Ojha S, Venkataraman B, Kurdi A, Mahgoub E, Sadek B, Rajesh M. Plant-derived agents for counteracting cisplatin-induced nephrotoxicity. Oxid Med Cell Longev. 2016; 1-27. https://doi.org/10.1155/2016/4320374

Ahmad R, Mujeeb M, Ahmad A, Anwar F. Ameliorative effect of Aegle marmelos leaves extract against cisplatin-induced nephrotoxicity and oxidative stress. Bangladesh J Pharmacol. 2016; 11(1):101-09. https://doi.org/10.3329/bjp.v11i1.24004

Dwivedi J, Singh M, Sharma S, Sharma S. Antioxidant and nephroprotective potential of Aegle marmelos leaves extract. J Herbs, Spices, and Med Plants. 2017; 23(4):363-77. https://doi.org/10.1080/10496475.2017.1345029

Singh P, Srivastava MM, Khemani LD. Renoprotective effects of Andrographis paniculata (Burm. f.) Nees in rats. Upsala J Med Sci. 2009; 114(3):136-9. https://doi.org/10.1080/03009730903174321

Adeoye BO, Oyagbemi AA, Asenuga ER, Omobowale TO, Adedapo AA. The ethanol leaf extract of Andrographis paniculata blunts acute renal failure in cisplatin-induced injury in rats through inhibition of Kim-1 and upregulation of the Nrf2 pathway. J Basic Clin Physiol Pharmacol. 2018; 30(2):205-17. https://doi.org/10.1515/jbcpp-2017-0120

Shiju TM, Rajkumar R, Rajesh NG, Viswanathan P. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats. 2013.

Galal HM, Abd el-Rady NM. Aqueous garlic extract suppresses experimental gentamicin-induced renal pathophysiology mediated by oxidative stress, inflammation, and Kim-1. Pathophysiology. 2019; 26(3-4):271-9. https://doi.org/10.1016/j.pathophys.2019.07.002

Shirwaikar A, Issac D, Malini S. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. J Ethnopharmacol. 2004; 90(1):81-6. https://doi.org/10.1016/j.jep.2003.09.033

Lekha GS. Evaluation of the nephroprotective activity of sirupeelai kudineer (Aerva lanata decoction) in rats. J Chem Pharm Res. 2015; 7(10):522-30.

Narayanan M, Krishnan L, Natarajan D, Kandasamy S, El Askary A, Elfasakhany A, et al. Evaluation of antibacterial, antioxidant, and nephroprotective proficiency of methanol extract of Aerva lanata. Process Biochem. 2021; 109:98-103. https://doi.org/10.1016/j.procbio.2021.07.004

Ma X, Yan L, Zhu Q, Shao F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-κB signaling pathway. PLoS One. 2017; 12(2):e0171612. https://doi.org/10.1371/journal.pone.0171612

Arunachalam R, Konda VGR, Eerike M, Radhakrishnan AK, Devi S. Nephroprotective effects of ethanolic root extract of Azima tetracantha lam in adenine-induced chronic kidney failure in Wistar rats. Indian J Pharmacol. 2021; 53(3):198. https://doi.org/10.4103/ijp.IJP_552_19

Manikandaselvi S, Ramya D, Ravikumar R, Thinagarbabu R. Evaluation of antinephrotoxic potential of Azima tetracantha Lam. and Tribulus terrestris Linn. Int J Pharm Pharm Sci. 2012; 4:566-8.

Sawardekar SB, Patel TC. Evaluation of the effect of Boerhavia diffusa on gentamicin-induced nephrotoxicity in rats. J Ayurveda Integr Med. 2015; 6(2):95. https://doi.org/10.4103/0975-9476.146545

Sharma S, Baboota S, Amin S, Mir SR. Ameliorative effect of a standardized polyherbal combination in methotrexate-induced nephrotoxicity in the rat. Pharm Biol. 2020; 58(1):184-99. https://doi.org/10.1080/13880209.2020.1717549

Pareta SK, Patra KC, Harwansh R, Kumar M, Meena KP. Protective effects of Boerhaavia diffusa against acetaminophen-induced nephrotoxicity in rats. Pharmacologyonline. 2011; 2:698-706.

Karwasra R, Kalra P, Nag TC, Gupta YK, Singh S, Panwar A. Safety assessment and attenuation of cisplatin-induced nephrotoxicity by tuberous roots of Boerhaavia diffusa. Regul Toxicol Pharmacol. 2016; 81:341-52. https://doi.org/10.1016/j.yrtph.2016.09.020

Ibrahim A, Noman Albadani R. Evaluation of the potential nephroprotective and antimicrobial effect of Camellia sinensis leaves versus Hibiscus sabdariffa (in vivo and in vitro studies). Adv Pharmacol Pharm Sci. 2014; 2014. https://doi.org/10.1155/2014/389834

Ben Saad A, Ncib S, Rjeibi I, Saidi I, Zouari N. Nephroprotective and antioxidant effect of green tea (Camellia sinensis) against nicotine-induced nephrotoxicity in rats and characterization of its bioactive compounds by HPLC–DAD. Appl Physiol Nutr Metab. 2019; 44(11):1134-40. https://doi.org/10.1139/apnm-2017-0834

Ramya S, Prasanna G. Nephroprotective effect of Camellia sinensis L. on lead acetate induced male albino rats. Int J Pharmtech Res. 2013; 5(2):511-15.

Sarumathy K, Rajan MSD, Vijay T, Jayakanthi J. Evaluation of phytoconstituents, nephroprotective and antioxidant activities of Clitoria ternatea. J Appl Pharm Sci. 2011; 164-72.

Annie S, Rajagopal PL, Malini S. Effect of Cassia auriculata Linn. root extract on cisplatin and gentamicin-induced renal injury. Phytomedicine. 2005; 12(8):555-60. https://doi.org/10.1016/j.phymed.2003.11.010

Bandawane DD, Mhetre NK. Study of Antihyperglycemic, Antihyperlipidemic, and Nephroprotective Activity of Cassia auriculata L. Extract in Streptozotocin-Induced Diabetic Rats. Dnyanamay. 2015; 43-9.

Al-joda AM, Zalzala MH. Inhibition of NF-kB Pathway by Gggulsterone in the Protective Effects of Cyclophosphamide-Induced Renal Toxicity. Iraqi J Pharm Sci. 2019; 28(2):180-5. https://doi.org/10.31351/vol28iss2pp180-185

Tahir M, Sadiq N, Ahmed S, Ali A, Rajpoot NN, Riaz U. Effects of aqueous and methanolic extracts of Cichorium intybus seeds on gentamicin induced nephrotoxicity in rats. J Islam (JIIMC). 2018; 13(4):184-8.

Zaman R, Alam A, Jafri MA, Sofi G, Ahmad G. Nephroprotective effect of Beekh Kasni (Roots of Cichorium intybus) in the form of methanolic and aqueous extract in Gentamycin induced rat models. J Pharmacogn Phytochem. 2017; 6(3):337-41.

Kausar MA, Parveen K, Siddiqui WA, Anwar S, Zahra A, Ali A, et al. Nephroprotective effects of polyherbal extract via attenuation of the severity of kidney dysfunction and oxidative damage in the diabetic experimental model. Cell Mol Biol. 2021; 67(4):42-55. https://doi.org/10.14715/cmb/2021.67.4.6

Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Gheldiu A-M, et al. Phytochemical profile, antioxidant, cardioprotective, and nephroprotective activity of Romanian chicory extract. Plants. 2020; 10(1):64. https://doi.org/10.3390/plants10010064

Bajpai VK, Kim J-E, Kang SC. Protective effect of heat-treated cucumber (Cucumis sativus L.) juice against lead-induced detoxification in rat model. Indian J Pharma Edu Res. 2017; 51:59-69. https://doi.org/10.5530/ijper.51.1.9

Shirwaikar A, Manjunath SM, Bommu P, Krishnanand B. Ethanol extract of Crataeva nurvala stem bark reverses cisplatin-induced nephrotoxicity. Pharm Biol. 2004; 42(7):559-64. https://doi.org/10.3109/13880200490901249

Shirwaikar A, Setty MM, Bommu P, Krishnanand B. Effect of lupeol isolated from Crataeva nurvala Buch.-Ham. stem bark extract against free radical-induced nephrotoxicity in rats. Indian J Exp Biol. 2004; 42:686-90. https://doi.org/10.1080/13880200490901249

Thuwaini MM, Kadhem HS, Al-Dierawi KH. The nephroprotective activity of Matricaria chamomile and Curcuma longa aqueous extracts on tetracyclines-induced nephrotoxicity in albino rats. Inter J Pharm Ther. 2016; 7(4):161-7.

Akinyemi AJ, Faboya OL, Paul AA, Olayide I, Faboya OA, Oluwasola TA. Nephroprotective effect of essential oils from ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes against cadmium-induced nephrotoxicity in rats. J Oleo Sci. 2018; 67(10):1339-45. https://doi.org/10.5650/jos.ess18115

Pathak NN, Rajurkar SR, Tarekh S, Badgire VV. Nephroprotective effects of carvedilol and Curcuma longa against cisplatin-induced nephrotoxicity in rats. Asian J Med Sci. 2014; 5(2):91-8. https://doi.org/10.3126/ajms.v5i2.5483

Topcu-Tarladacalisir Y, Sapmaz-Metin M, Karaca T. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Renal Failure. 2016; 38(10):1741-8. https://doi.org/10.1080/0886022X.2016.1229996

Soetikno V, Sari SDP, Maknun LU, Sumbung NK, Rahmi DNI, Pandhita BAW, et al. Pre-treatment with Curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res. 2019; 69(02):75-82. https://doi.org/10.1055/a-0641-5148

Chan C-F, Huang W-Y, Guo H-Y, Wang BR. Potent antioxidative and UVB protective effect of water extract of Eclipta prostrata L. TSWJ. 2014; 2014. https://doi.org/10.1155/2014/759039

Dungca NTP. Protective effect of the methanolic leaf extract of Eclipta alba (L.) Hassk. (Asteraceae) against gentamicin-induced nephrotoxicity in Sprague Dawley rats. J Ethnopharmacol. 2016; 184:18-21. https://doi.org/10.1016/j.jep.2016.03.002

Thomas P, Gururaja MP, Joshi H, Prasannashama K, D’Souza U, Chacko N, et al. Ameliorative potential of Eclipta alba on gentamycin induced renal toxicity in rats. Res J Pharm Technol. 2019; 12(1):192-6. https://doi.org/10.5958/0974-360X.2019.00035.0

Alibakhshi T, Khodayar MJ, Khorsandi L, Rashno M, Zeidooni L. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomed. Pharmacother. 2018; 105:225-32. https://doi.org/10.1016/j.biopha.2018.05.085

Salihu M, Ajayi BO, Adedara IA, Farombi EO. A 6-Gingerol-rich fraction from Zingiber officinale prevents hematotoxicity and oxidative damage in the kidney and liver of rats exposed to carbendazim. J Diet Suppl. 2016; 13(4):433-48. https://doi.org/10.3109/19390211.2015.1107802