Characterization of P-type Nickel Oxide (NiO) Thin Films Prepared by RF Magnetron Sputtering
DOI:
https://doi.org/10.18311/jsst/2020/22591Keywords:
Photoluminescence and Hall measurement, Thin films, UV-Visible spectroscopy, X-Ray diffraction, NiOAbstract
In the present work, NiO thin films were prepared on glass and silicon substrates by Radio Frequency (RF) magnetron sputtering technique. NiO films are deposited with the argon flow rate of 10 and 20 sccm at room temperature. The 2” NiO target was used for the deposition of NiO films and was characterized using X-Ray Diffraction (XRD), Photoluminescence (PL), UV-Visible spectroscopy and Hall Effect measurement to study the structural, optical and electrical properties of the films. The XRD pattern shows the small intense peak, revealing the nanocrystallinity of the NiO film. The transmittance spectra indicated the high transmittance in the order of ~90%. The photoluminescence studies indicated the bandgap of 3.52 eV. The Hall Effect studies demonstrated the p-type behaviour of NiO films. The film showed the p-type conductivity and hole concentration ∼5.34 x1019 cm−3 with Hall mobility of ∼612 cm2/V·s for the film deposited at 20 sccm.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2020-02-20
Published 2020-08-20
References
W. J. Nam, Z. Gray, J. Stayancho, V. Plotnikov, D. Kwon, S. Waggoner, D. V. Shenai-Khatkhate, M. Pickering, T. Okano, A. Compaan, S. J. Fonash, ECS Trans, 66, 275 (2015). https://doi.org/10.1149/06601.0275ecst DOI: https://doi.org/10.1149/06601.0275ecst
C.-C. Wu, C.-F. Yang, Sol. Energy Mater. Sol. Cells, 132, 492 (2015). DOI: https://doi.org/10.1016/j.solmat.2014.09.017
Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S.Yang, Angew. Chem. Int. Ed., 53, 1 (2014). DOI: https://doi.org/10.1002/anie.201310509
N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, J. Mater. Chem, C 1, 7333 (2013). https://doi.org/10.1039/c3tc31444h DOI: https://doi.org/10.1039/c3tc31444h
C. Magana, D. Acosta, A. Martinez, J. Ortega, Solar Energy, 80, 161 (2006). https://doi.org/10.1016/j.solener. 2005.04.006 DOI: https://doi.org/10.1016/j.solener.2005.04.006
M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater., 18, 789 (2006). https://doi.org/10.1002/adma.200501717 DOI: https://doi.org/10.1002/adma.200501717
H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 236, 27 (1993). https://doi.org/10.1016/0040- 6090(93)90636-4 DOI: https://doi.org/10.1016/0040-6090(93)90636-4
S. Kerli, U. Alver, H. Yaykaşl, Appl. Surf. Sci. 318, 164 (2014). https://doi.org/10.1016/j.apsusc.2014.02.141 DOI: https://doi.org/10.1016/j.apsusc.2014.02.141
C. Rameshkumar, R. Subalakshmi, J. Surf. Sci. Technol., 31, 176 (2015).
Y. Reddy, B. Ajitha, P. S. Reddy, Mater. Express, 4, 32 (2014). https://doi.org/10.1166/mex.2014.1145 DOI: https://doi.org/10.1166/mex.2014.1145
D. J. Sharmila, J. Brijitta, J. Surf. Sci. Technol., 33, 115 (2017) https://doi.org/10.18311/jsst/2017/16187 DOI: https://doi.org/10.18311/jsst/2017/16187
X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells, 92, 628 (2008). https:// doi.org/10.1016/j.solmat.2008.01.009 DOI: https://doi.org/10.1016/j.solmat.2008.01.009
T. S. Yang, W. Cho, M. Kim, K.S. An, T.M. Chung, C.G. Kim, J. Vac. Sci. Tech. A, 23, 1238 (2005). https://doi. org/10.1116/1.1875172 DOI: https://doi.org/10.1116/1.1875172
M. Krunks, J. Soon, T. Unt, A. Mere, V. Mikli, Vacuum, 107, 242 (2014). https://doi.org/10.1016/j.vacuum.2014.02.013 DOI: https://doi.org/10.1016/j.vacuum.2014.02.013
N. Wang, C. Q. Liu, B. Wen, H. L. Wang, S.M. Liu, W. P. Chai, Mater. Lett., 122, 269 (2014). https://doi.org/10.1016/j.matlet. 2014.02.040 DOI: https://doi.org/10.1016/j.matlet.2014.02.040
I. Sta, M. Jlassi, M. Hajji, H. Ezzaouia, Thin Solid Films, 555, 131 (2014). https://doi.org/10.1016/j.tsf.2013.10.137 DOI: https://doi.org/10.1016/j.tsf.2013.10.137
H.-L. Chen, Y.-M. Lu, W.-S. Hwang, Surf. Coat. Tech., 198, 138 (2005). DOI: https://doi.org/10.1016/j.surfcoat.2004.10.032
Y. A. K. Reddy, A. M. Reddy, A. S. Reddy, P. S. Reddy, J. Nano. Elec. Phys., 4, 04002 (2012).
Y. Zhao, H. Wang, C. Wu, Z.F. Shi, F.B. Gao, W.C. Li, G.G. Wu, B. L. Zhang , G. T. Du, Vacuum, 103, 14 (2014). https:// doi.org/10.1016/j.vacuum.2013.11.009 DOI: https://doi.org/10.1016/j.vacuum.2013.11.009
I. Manouchehri, S. A. O. AlShiaa, D. Mehrparparvar, M. I. Hamil, R. Moradian, Optik, 127, 9400 (2016). https://doi. org/10.1016/j.ijleo.2016.06.092 DOI: https://doi.org/10.1016/j.ijleo.2016.06.092
L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, X. Zhao, Appl. Surf. Sci., 254, 2401 (2008). DOI: https://doi.org/10.1016/j.apsusc.2007.09.051
S. T. Akinkuade, W. E. Meyer, J. M. Nel, Physica B, 575, 411694 (2019). https://doi.org/10.1016/j.physb.2019.411694 DOI: https://doi.org/10.1016/j.physb.2019.411694
V. Gowthami, M. Meenakshi, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Int J Chem Tech Res., 6, 5196 (2014).
F. I. Ezema, A. B. C. Ekwealor, R. U. Osuji, J. Optoelectron Adv, M 9, 1898 (2007).
A. H. Hammad, M.Sh. Abdel-wahab, S. Vattamkandathil, A. R. Ansari, Physica B, 568, 6 (2019). https://doi. org/10.1016/j.physb.2019.05.012 DOI: https://doi.org/10.1016/j.physb.2019.05.012
Attieh A. Al-Ghamdi, M. Sh. Abdel-wahab, A. A. Farghali, P.M.Z. Hasan, Mater. Res. Bull., 75, 71 (2016). https://doi. org/10.1016/j.materresbull.2015.11.027 DOI: https://doi.org/10.1016/j.materresbull.2015.11.027
J. D. Hwang, T. H. Ho, Mat. Sci. Semicon Proc., 71, 396. (2017). https://doi.org/10.1016/j.mssp.2017.09.002 DOI: https://doi.org/10.1016/j.mssp.2017.09.002