Study of Water Absorption Properties of Annealed Nanodiamond/Epoxy Nanocomposites

Jump To References Section

Authors

  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu ,IN
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jsst/2021/25380

Keywords:

Epoxy, Nanodiamond, SEM
Characterization of nanocomposites

Abstract

Water absorption behavior of annealed Nanodiamond (ND) particle filled epoxy composite, has been studied. Removal of impurity present in the pristine ND and its surface modifications, were carried out by heat treatment. Different weight percent of ND (0.1, 0.3 and .05 wt. %) were incorporated in a commercial grade epoxy resin (L-12) in a controlled manner. A good and homogeneous distribution of ND in the composite, was observed. This resulted in reduction of mobility of the epoxy chain due to formation of highly immobile mono-layers around ND as well as formation of hydrogen bond between the ND and the epoxy. The water absorption and the contact angle properties of the resulting composites are measured. The results indicate that the water absorption as well as contact angle of the composite decrease with the increase of incorporated ND. It is observed that incorporation of ND into epoxy matrix, enhances the water resistance property of the composite.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-05-12

How to Cite

Singh, B., & Mohanty, A. (2022). Study of Water Absorption Properties of Annealed Nanodiamond/Epoxy Nanocomposites. Journal of Surface Science and Technology, 37(1-2), 15–21. https://doi.org/10.18311/jsst/2021/25380

Issue

Section

Articles
Received 2020-05-21
Accepted 2022-01-24
Published 2022-05-12

 

References

N. Saba, F. Mohammad, M. Pervaiz, M. Jawaid, O. Alothman and M. Sain, Inter J, Bio. Macro. 97, 190 (2017). DOI: https://doi.org/10.1016/j.ijbiomac.2017.01.029

N. Saba and M. Jawaid. Prop and Chara Elsevier: Cambridge, UK, 57 (2017). https://doi.org/10.1016/B978-0-08-100787- 7.00003-2. PMid:28560857. DOI: https://doi.org/10.1016/B978-0-08-100787-7.00003-2

Li-Rong Bao and A.F. Yee. Polymer, 14, 3987 (2002).

P.C. Varelidis, D.G. Papakostopoulos, C.I. Pandazis and C.D. Papaspyrides. Compos. Part A, 31, 549 (2000). https://doi. org/10.1016/S1359-835X(99)00101-3. DOI: https://doi.org/10.1016/S1359-835X(99)00101-3

V.K. Srivastava. Mater. Sci. Eng. A., 263, 56 (1999). https:// doi.org/10.1016/S0921-5093(98)01037-5. DOI: https://doi.org/10.1016/S0921-5093(98)01037-5

G. Marom. New York: Elsevier, 397 (1989). https://doi. org/10.1016/B978-0-444-87286-9.50014-0.

G. Marom. Polymer permeability. New York: Elsevier, 341 (1986). https://doi.org/10.1007/978-94-009-4858-7_9. DOI: https://doi.org/10.1007/978-94-009-4858-7_9

J. Scheirs. Polymers - a practical approach, New York: Wiley, (2000).

M. Woo and M.R. Piggott. J. Compos. Technol. Res., 10, 20 (1988). https://doi.org/10.1520/CTR10271J. DOI: https://doi.org/10.1520/CTR10271J

G. Marom. Application of Fracture Mechanics to Compo. Mater., 397 (1989). https://doi.org/10.1016/B978-0-444- 87286-9.50014-0. DOI: https://doi.org/10.1016/B978-0-444-87286-9.50014-0

G. Marom. Polymer permeability. New York: Elsevier, 342 (1986).

J.L. Thomason. Composites, 26, 477 (1995). https://doi. org/10.1016/0010-4361(95)96805-G, https://doi.org/10.1016/ 0010-4361(95)96804-F, https://doi.org/10.1016/0010-4361(95) 96806-H.

M.C. Lee and N.A. Peppas. Prog. Polym. Sci., 8, 947 (1993). https://doi.org/10.1007/978-1-4471-2063-6_280. DOI: https://doi.org/10.1007/978-1-4471-2063-6_280

I. Merdas, F. Thominette, A. Tcharkhtchi and J. Verdu. Compo. Sci. Techno., 62, 487 (2002). https://doi.org/10.1016/ S0266-3538(01)00138-5. DOI: https://doi.org/10.1016/S0266-3538(01)00138-5

M. Liu, P. Wu, Y. Ding and S. Li. Phys. Chem. Phys., 5, 1848 (2003). https://doi.org/10.1039/b208782k. DOI: https://doi.org/10.1039/b208782k

P. C. Ma, N. A. Siddiqui, G. Marom and J. K. Kim. Compo. Part A, 41, 1367 (2010). https://doi.org/10.1016/j.compositesa. 2010.07.003.

R. J. Good and K. L. Mittal. VSP, Utrecht, The Netherlands, (1993).

A. A. Kafi, K. Magniez and B. L. Fox. Journ. of Adhes Sci. and Techn., 26, 187, (2012). DOI: https://doi.org/10.1163/016942411X569381

B. Singh and A. Mohanty. Mater. Res. Exp., 6, 1-14 (2019). https://doi.org/10.1163/016942411X569381. DOI: https://doi.org/10.1088/2053-1591/ab5600

N.A. Adam and J. Asik. Mater. Sci. and Engin., IOP Publishing, 469 (2019). https://doi.org/10.1088/1757- 899X/469/1/012064. DOI: https://doi.org/10.1088/1757-899X/469/1/012064

N.W.A. Razak and K. Anizah. Procedia Eng., 41, 1593 (2012). https://doi.org/10.1016/j.proeng.2012.07.355. DOI: https://doi.org/10.1016/j.proeng.2012.07.355

L. Wei, A.G. McDonald, C. Freitag and J.J. Morrell. Polym. Degrad. Stab., 98, 1348 (2013). https://doi.org/10.1016/j. polymdegradstab.2013.02.006, https://doi.org/10.1016/j. polymdegradstab.2013.03.027.

O. Adekomaya and K. Adama. Niger. J. Technol., 37, 167 (2018). https://doi.org/10.4314/njt.v37i1.22. DOI: https://doi.org/10.4314/njt.v37i1.22

E. P. Giannelis. John Wiley & Sons, Ltd, 12, 675 (1998).

Y. Hu, L. Shen, H. Yang, M. Wang, T. Liu and T. Liang. Poly. Testi., 25, 492 (2006). https://doi.org/10.1016/j.polymertesting. 2006.02.005. DOI: https://doi.org/10.1016/j.polymertesting.2006.02.005

R.S. Sinha and O. Masami. Prog. Poly. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002. DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002

T. J. Pinnavaia and G. W. Beall. John Wil., 2000.

M. Mehrabzadeh and R.P. Burford. Jour. of Appl. Poly. Scie., 61, 2305 (1996). https://doi.org/10.1002/(SICI)1097- 4628(19960926)61:13<2305::AID-APP9>3.0.CO;2-G. DOI: https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2305::AID-APP9>3.0.CO;2-G

B.S. Hayes. University of Washington, (1997).

B.S. Hayes and J.C. Seferis. Poly. Compo., 19, 54 (1998). https://doi.org/10.1002/pc.10075. DOI: https://doi.org/10.1002/pc.10075