A Review on the Occurrence, Exposure, and Health Impacts of Bisphenol A
DOI:
https://doi.org/10.18311/ti/2021/v28i4/27473Keywords:
Bisphenol A, Contaminants, Industrial products, Toxicity, Sewage SludgeAbstract
Bisphenol A (BPA) is one of the emerging contaminants associated with deleterious health effects on both public and wildlife and is extensively incorporated into different industrial products. BPA is ubiquitously and frequently detected in the environment and has become a serious health issue due to its presence in food organisms and drinking water. The distribution of BPA has recently become an important issue worldwide, but investigations on the toxicity of BPA remain limited. A review of the literature reveals that BPA has a widespread presence in environmental media, such as indoor dust, surface water, sediments, and sewage sludge. In the present review, an overview of the research studies dealing with the occurrence, fate, exposure, and toxicity of BPA is discussed. Recent studies have raised worry over the potentially harmful implications of BPA exposure in humans and wildlife. However, further investigation on the potential risks of BPA to humans and its mechanisms of toxicity should be conducted to better understand and control the risks of such novel chemicals.Downloads
Published
How to Cite
Issue
Section
Accepted 2021-07-31
Published 2021-12-22
References
Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007; 24(2):139–77. https://doi.org/10.1016/j.reprotox.2007.07.010. PMid:17825522 DOI: https://doi.org/10.1016/j.reprotox.2007.07.010
Ying GG, Kookana RS, Kumar A, Mortimer M. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Sci Total Environ. 2009; 407(18):5147–55. https://doi.org/10.1016/j.scitotenv.2009.06.002. PMid:19559464 DOI: https://doi.org/10.1016/j.scitotenv.2009.06.002
Barrios-Estrada C, Rostro-Alanis M de J, Parra AL, Belleville MP, Sanchez-Marcano J, Iqbal HMN, Parra-Saldívar R. Potentialities of active membranes with immobilized laccase for bisphenol A degradation. Int J Biol Macromol. 2018; 108:837–44. https://doi.org/10.1016/j.ijbiomac.2017.10.177. PMid:29101049 DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.177
Bilal M, Iqbal HMN. An insight into toxicity and human-health-related adverse consequences of cosmeceuticals - A review. Sci Total Environ. 2019; 670:555–68.
https://doi.org/10.1016/j.scitotenv.2019.03.261. PMid:30909033 DOI: https://doi.org/10.1016/j.scitotenv.2019.03.261
Collica S, Pederzoli F, Bivalacqua T. The epidemiology and pathophysiology of erectile dysfunction and the role of environment-current updates. Bioenvironmental Issues Affecting Men's Reproductive and Sexual Health; 2018. p. 439–55. https://doi.org/10.1016/B978-0-12-801299-4.00027-X DOI: https://doi.org/10.1016/B978-0-12-801299-4.00027-X
Bowes DA, Halden RU. Breast cancer and dietary intake of endocrine disruptors: A review of recent literature. Curr Pathobiol Rep. 2019; 7(3):41–6. https://doi.org/10.1007/s40139-019-00199-1 DOI: https://doi.org/10.1007/s40139-019-00199-1
Darbre PD. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res. 2020; 112(17):1300–7. https://doi.org/10.1002/bdr2.1778. PMid:32720473 DOI: https://doi.org/10.1002/bdr2.1778
Jalal N, Surendranath AR, Pathak JL, Yu S, Chung CY. Bisphenol A (BPA) the mighty and the mutagenic. Toxicol Rep. 2018; 5:76–84. https://doi.org/10.1016/j.toxrep.2017.12.013. PMid:29854579 PMCid:PMC5977157 DOI: https://doi.org/10.1016/j.toxrep.2017.12.013
Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect. 2012; 120(7):935–43.
https://doi.org/10.1289/ehp.1104052. PMid:22398195 PMCid:PMC3404651 DOI: https://doi.org/10.1289/ehp.1104052
Hormann AM, vom Saal FS, Nagel SC, Stahlhut RW, Moyer CL, Ellersieck MR, et al. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PLoS ONE. 2014; 9(10). https://doi.org/10.1371/journal.pone.0110509. PMid:25337790 PMCid:PMC4206219 DOI: https://doi.org/10.1371/journal.pone.0110509
Zhou Y, Chen M, Zhao F, Mu D, Zhang Z, Hu J. Ubiquitous occurrence of chlorinated byproducts of bisphenol A and nonylphenol in bleached food contacting papers and their implications for human exposure. Environ Sci Technol. 2015; 49(12):7218–26.
https://doi.org/10.1021/acs.est.5b00831. PMid:26000779 DOI: https://doi.org/10.1021/acs.est.5b00831
Andra SS, Charisiadis P, Arora M, van Vliet-Ostaptchouk JV, Makris KC. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. Environ Int. 2015; 85:352–79. https://doi.org/10.1016/j.envint.2015.09.011. PMid:26521216 PMCid:PMC6415542 DOI: https://doi.org/10.1016/j.envint.2015.09.011
Micha?owicz J. Bisphenol A - Sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014; 37(2):738–58. https://doi.org/10.1016/j.etap.2014.02.003. PMid:24632011 DOI: https://doi.org/10.1016/j.etap.2014.02.003
Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr Rev. 2009; 30(1):75–95. https://doi.org/10.1210/er.2008-0021. PMid:19074586 PMCid:PMC2647705 DOI: https://doi.org/10.1210/er.2008-0021
Hart RJ. The impact of prenatal exposure to bisphenol A on male reproductive function. Front Endocrinol. 2020; 11:320. https://doi.org/10.3389/fendo.2020.00320. PMid:32547491. PMCid:PMC7272684 DOI: https://doi.org/10.3389/fendo.2020.00320
Nishikawa JI, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharmacol. 1999; 154(1):76–83. https://doi.org/10.1006/taap.1998.8557. PMid:9882594 DOI: https://doi.org/10.1006/taap.1998.8557
Hu JY, Aizawa T, Ookubo S. Products of aqueous chlorination of bisphenol A and their estrogenic activity. Environ Sci Technol. 2002; 36(9):1980–7. https://doi.org/10.1021/es011177b. PMid:12026981 DOI: https://doi.org/10.1021/es011177b
Rivas A, Lacroix M, Olea-Serrano F, Laos I, Leclercq G, Olea N. Estrogenic effect of a series of bisphenol analogues on gene and protein expression in MCF-7 breast cancer cells. J Steroid Biochem. 2002; 82(1):45–53. https://doi.org/10.1016/S0960-0760(02)00146-2 DOI: https://doi.org/10.1016/S0960-0760(02)00146-2
Takemura H, Ma J, Sayama K, Terao Y, Zhu BT, Shimoi K. In vitro and in vivo estrogenic activity of chlorinated derivatives of bisphenol A. Toxicology. 2005; 207(2):215–21.
https://doi.org/10.1016/j.tox.2004.09.015. PMid:15596252 DOI: https://doi.org/10.1016/j.tox.2004.09.015
Kang JH, Katayama Y. Biodegradation or metabolism of bisphenol A in the environment. Environmental Biodegradation Research Focus. New York: Nova Science Publisher, Inc.; 2008. 49–76.
Rykowska I, Wasiak W. Properties, threats, and methods of analysis of bisphenol A and its derivatives. Acta chromatogr. 2006; 16:7.
Zhu Z, Zuo Y. Bisphenol A and other alkylphenols in the environment — occurrence, fate, health effects and analytical techniques. Adv Environ Res. 2013; 2(3):179–202.
https://doi.org/10.12989/aer.2013.2.3.179 DOI: https://doi.org/10.12989/aer.2013.2.3.179
Muhamad MS, Salim MR, Lau WJ, Yusop Z. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environ Sci Pollut Res. 2016; 23(12):11549–67. https://doi.org/10.1007/s11356-016-6357-2. PMid:26939684 DOI: https://doi.org/10.1007/s11356-016-6357-2
Liu Z hua, Kanjo Y, Mizutani S. Removal mechanisms for Endocrine Disrupting Compounds (EDCs) in wastewater treatment — physical means, biodegradation, and chemical advanced oxidation: A review. Sci Total Environ. 2009; 407(2):731–48. https://doi.org/10.1016/j.scitotenv.2008.08.039. PMid:18992918 DOI: https://doi.org/10.1016/j.scitotenv.2008.08.039
Tsai WT. Human health risk on environmental exposure to bisphenol A: A Review. J Environl Sci Health, C. 2006; 24(2):225–55. https://doi.org/10.1080/10590500600936482. PMid:17114111 DOI: https://doi.org/10.1080/10590500600936482
Fu P, Kawamura K. Ubiquity of bisphenol A in the atmosphere. Environ Pollut. 2010; 158(10):3138–43. https://doi.org/10.1016/j.envpol.2010.06.040. PMid:20678833 DOI: https://doi.org/10.1016/j.envpol.2010.06.040
Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environ Int. 2012; 42(1):91–9. https://doi.org/10.1016/j.envint.2011.04.010. PMid:21596439 DOI: https://doi.org/10.1016/j.envint.2011.04.010
Ritchie EE, Princz JI, Robidoux PY, Scroggins RP. Ecotoxicity of xanthene dyes and a non-chlorinated bisphenol in soil. Chemosphere. 2013; 90(7):2129–35.
https://doi.org/10.1016/j.chemosphere.2012.10.096. PMid:23211322 DOI: https://doi.org/10.1016/j.chemosphere.2012.10.096
Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ESS, et al. Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response. 2015; 13(3). https://doi.org/10.1177/1559325815598308. PMid:26674671. PMCid:PMC4674187 DOI: https://doi.org/10.1177/1559325815598308
Staples CA, Dorn PB, Klecka GM, O'Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998; 36(10):2149–73.
https://doi.org/10.1016/S0045-6535(97)10133-3 DOI: https://doi.org/10.1016/S0045-6535(97)10133-3
Cousins IT, Staples CA, Kle?ka GM, Mackay D. A multimedia assessment of the environmental fate of bisphenol A. Hum Ecol Risk Assess. 2002; 8(5):1107–35.
https://doi.org/10.1080/1080-700291905846 DOI: https://doi.org/10.1080/1080-700291905846
Kle?ka GM, Staples CA, Clark KE, Van Der Hoeven N, Thomas DE, Hentges SG. Exposure analysis of bisphenol A in surface water systems in North America and Europe. Environ Sci Technol. 2009; 43(16):6145–50. https://doi.org/10.1021/es900598e. PMid:19746705 DOI: https://doi.org/10.1021/es900598e
Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J Environ Manage. 2012; 104:19–34. https://doi.org/10.1016/j.jenvman.2012.03.021. PMid:22481365 DOI: https://doi.org/10.1016/j.jenvman.2012.03.021
Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philoso Trans R Soc B, Bio Sci. 2009; 364(1526):2027–45. https://doi.org/10.1098/rstb.2008.0284. PMid:19528054. PMCid:PMC2873017 DOI: https://doi.org/10.1098/rstb.2008.0284
Im J, Löffler FE. Fate of bisphenol A in Terrestrial and Aquatic Environments. Environ Sci Tech. 2016; 50(16):8403–16. https://doi.org/10.1021/acs.est.6b00877. PMid:27401879 DOI: https://doi.org/10.1021/acs.est.6b00877
Fürhacker M, Scharf S, Weber H. Bisphenol A: Emissions from point sources. Chemosphere. 2000; 41(5):751–6. https://doi.org/10.1016/S0045-6535(99)00466-X DOI: https://doi.org/10.1016/S0045-6535(99)00466-X
Dorn PB, Chou CS, Gentempo JJ. Degradation of bisphenol A in natural waters. Chemosphere. 1987; 16(7):1501–7. https://doi.org/10.1016/0045-6535(87)90090-7 DOI: https://doi.org/10.1016/0045-6535(87)90090-7
Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002; 36(6):1429–38.
https://doi.org/10.1016/S0043-1354(01)00367-0 DOI: https://doi.org/10.1016/S0043-1354(01)00367-0
Leusch FDL, Chapman HF, van den Heuvel MR, Tan BLL, Gooneratne SR, Tremblay LA. Bioassay-derived androgenic and estrogenic activity in municipal sewage in Australia and New Zealand. Ecotoxicol Environ Saf. 2006; 65(3):403–11. https://doi.org/10.1016/j.ecoenv.2005.07.020. PMid:16169080 DOI: https://doi.org/10.1016/j.ecoenv.2005.07.020
Musolff A, Leschik S, Reinstorf F, Strauch G, Schirmer M. Micropollutant loads in the urban water cycle. Environ Sci Technol. 2010; 44(13):4877–83. https://doi.org/10.1021/es903823a. PMid:20509608 DOI: https://doi.org/10.1021/es903823a
Xu EGB, Liu S, Ying GG, Zheng GJS, Lee JHW, Leung KMY. The occurrence and ecological risks of endocrine disrupting chemicals in sewage effluents from three different sewage treatment plants, and in natural seawater from a marine reserve of Hong Kong. Mar Pollut Bull. 2014; 85(2):352–62.
https://doi.org/10.1016/j.marpolbul.2014.02.029. PMid:24650541 DOI: https://doi.org/10.1016/j.marpolbul.2014.02.029
Xu W, Yan W, Huang W, Miao L, Zhong L. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications. Environ Geochem Health. 2014; 36(6):1095–104. https://doi.org/10.1007/s10653-014-9618-3. PMid:24817613 DOI: https://doi.org/10.1007/s10653-014-9618-3
Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O. Bisphenol A in hazardous waste landfill leachates. Chemosphere. 2001; 42(4):415–8. https://doi.org/10.1016/S0045-6535(00)00079-5 DOI: https://doi.org/10.1016/S0045-6535(00)00079-5
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999?2000: A National Reconnaissance. Environ Sci Technol. 2002; 36(6):1202–11. https://doi.org/10.1021/es011055j. PMid:11944670 DOI: https://doi.org/10.1021/es011055j
Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology. 2006; 26:79–89.
https://doi.org/10.1016/j.tox.2006.06.009. PMid:16860916 DOI: https://doi.org/10.1016/j.tox.2006.06.009
Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res. 2015; 22(8):5711–41. https://doi.org/10.1007/s11356-014-3974-5. PMid:25548011. PMCid:PMC4381092 DOI: https://doi.org/10.1007/s11356-014-3974-5
Makinwa T, Uadia P. A survey of the level of bisphenol A (BPA) in effluents, soil leachates, food samples, drinking water and consumer products in southwestern Nigeria. World Environ. 2015; 5(4):135–9.
Zieli?ska M, Bu?kowska K, Cydzik-Kwiatkowska A, Bernat K, Wojnowska-Bary?a I. Removal of bisphenol A (BPA) from biologically treated wastewater by microfiltration and nanofiltration. Int J Environ Sci Technol. 2016; 13(9):2239–48. https://doi.org/10.1007/s13762-016-1056-6 DOI: https://doi.org/10.1007/s13762-016-1056-6
Sharma J, Mishra IM, Kumar V. Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82- oxidation systems. J Environ Manage. 2015; 156:266–75. https://doi.org/10.1016/j.jenvman.2015.03.048. PMid:25889275 DOI: https://doi.org/10.1016/j.jenvman.2015.03.048
Zhang A, Li Y. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Sci Total Environ. 2014; 493:307–23. https://doi.org/10.1016/j.scitotenv.2014.05.149. PMid:24951888 DOI: https://doi.org/10.1016/j.scitotenv.2014.05.149
Yüksel S, Kabay N, Yüksel M. Removal of bisphenol A (BPA) from water by various Nano Filtration (NF) and Reverse Osmosis (RO) membranes. J Hazard Mater. 2013; 263:307–10.
https://doi.org/10.1016/j.jhazmat.2013.05.020. PMid:23731784 DOI: https://doi.org/10.1016/j.jhazmat.2013.05.020
Chen J, Huang X, Lee D. Bisphenol A removal by a membrane bioreactor. Process Biochem. 2008; 43(4):451–6. https://doi.org/10.1016/j.procbio.2008.01.001 DOI: https://doi.org/10.1016/j.procbio.2008.01.001
Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE. Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation. 2013; 85:483–90. https://doi.org/10.1016/j.ibiod.2013.03.012 DOI: https://doi.org/10.1016/j.ibiod.2013.03.012
Umar M, Roddick F, Fan L, Aziz HA. Application of ozone for the removal of bisphenol A from water and wastewater — A review. Chemosphere. 2013; 90(8):2197–207.
https://doi.org/10.1016/j.chemosphere.2012.09.090. PMid:23153776 DOI: https://doi.org/10.1016/j.chemosphere.2012.09.090
Dehghani MH, Ghadermazi M, Bhatnagar A, Sadighara P, Jahed-Khaniki G, Heibati B, et al. Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J Environ Chem Eng. 2016; 4(3):2647–55. https://doi.org/10.1016/j.jece.2016.05.011 DOI: https://doi.org/10.1016/j.jece.2016.05.011
Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: Food Exposure and Impact on Human Health. Compr Rev Food Sci Food Saf. 2018; 17(6):1503–17.
https://doi.org/10.1111/1541-4337.12388. PMid:33350146 DOI: https://doi.org/10.1111/1541-4337.12388
Martínez MA, Rovira J, Prasad SR, Nadal M, Schuhmacher M, Kumar V. Comparing dietary and non-dietary source contribution of BPA and DEHP to prenatal exposure: A Catalonia (Spain) case study. Environ Res. 2018; 166:25–34. https://doi.org/10.1016/j.envres.2018.05.008. PMid:29859370 DOI: https://doi.org/10.1016/j.envres.2018.05.008
Chen WY, Shen YP, Chen SC. Assessing bisphenol A (BPA) exposure risk from long-term dietary intakes in Taiwan. Sci Total Environ. 2016; 543:140–6. https://doi.org/10.1016/j.scitotenv.2015.11.029. PMid:26580736 DOI: https://doi.org/10.1016/j.scitotenv.2015.11.029
Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, Rizzo J, Nudelman JL, Brody JG. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environ Health Perspect. 2011; 119(7):914–20.
https://doi.org/10.1289/ehp.1003170. PMid:21450549. PMCid:PMC3223004 DOI: https://doi.org/10.1289/ehp.1003170
Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012; 50(10):3725–40.
https://doi.org/10.1016/j.fct.2012.07.059. PMid:22889897 DOI: https://doi.org/10.1016/j.fct.2012.07.059
Porras SP, Heinälä M, Santonen T. Bisphenol A exposure via thermal paper receipts. Toxicol Lett. 2014; 230(3):413–20. https://doi.org/10.1016/j.toxlet.2014.08.020. PMid:25175590 DOI: https://doi.org/10.1016/j.toxlet.2014.08.020
Goldinger DM, Demierre AL, Zoller O, Rupp H, Reinhard H, Magnin R, et al. Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regul Toxicol Pharmacol. 2015; 71(3):453–62. https://doi.org/10.1016/j.yrtph.2015.01.002. PMid:25579646 DOI: https://doi.org/10.1016/j.yrtph.2015.01.002
Gao Y, Zhang Y, Gao J, Zhang H, Zheng L, Chen J. Determination of bisphenol A from toys and food contact materials by derivatization and gas chromatography-mass spectrometry. Chin J Chromatogr. 2013; 30(10):1017–20. https://doi.org/10.3724/SP.J.1123.2012.08015. PMid:23383489 DOI: https://doi.org/10.3724/SP.J.1123.2012.08015
Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010; 118(8):1055–70. https://doi.org/10.1289/ehp.0901716. PMid:20338858 PMCid:PMC2920080 DOI: https://doi.org/10.1289/ehp.0901716
Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002; 15(10):1281–7.
https://doi.org/10.1021/tx025548t. PMid:12387626 DOI: https://doi.org/10.1021/tx025548t
Geens T, Neels H, Covaci A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere. 2012; 87(7):796–802.
https://doi.org/10.1016/j.chemosphere.2012.01.002. PMid:22277880 DOI: https://doi.org/10.1016/j.chemosphere.2012.01.002
Matthews JB, Twomey K, Zacharewski TR. In vitro and in vivo interactions of bisphenol A and its metabolite, Bisphenol A glucuronide, with Estrogen receptors ? and ?. Chem Res Toxicol. 2001; 14(2):149–57. https://doi.org/10.1021/tx0001833. PMid:11258963 DOI: https://doi.org/10.1021/tx0001833
Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, Lanphear BP. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011; 128(5):873–82. https://doi.org/10.1542/peds.2011-1335. PMid:22025598. PMCid:PMC3208956 DOI: https://doi.org/10.1542/peds.2011-1335
Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-Nonylphenol in a human reference population. Environ Health Perspect. 2005; 113(4):391–5. https://doi.org/10.1289/ehp.7534. PMid:15811827. PMCid:PMC1278476 DOI: https://doi.org/10.1289/ehp.7534
Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008; 116(1):39–44.
https://doi.org/10.1289/ehp.10753. PMid:18197297. PMCid:PMC2199288 DOI: https://doi.org/10.1289/ehp.10753
Schönfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002; 110(11).
https://doi.org/10.1289/ehp.110-1241091. PMid:12417499. PMCid:PMC1241091 DOI: https://doi.org/10.1289/ehp.110-1241091
Kuruto-Niwa R, Tateoka Y, Usuki Y, Nozawa R. Measurement of bisphenol A concentrations in human colostrum. Chemosphere. 2007; 66(6):1160–4. https://doi.org/10.1016/j.chemosphere.2006.06.073. PMid:16904728 DOI: https://doi.org/10.1016/j.chemosphere.2006.06.073
Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002; 17(11):2839-41. https://doi.org/10.1093/humrep/17.11.2839. PMid:12407035 DOI: https://doi.org/10.1093/humrep/17.11.2839
Nahar MS, Liao C, Kannan K, Dolinoy DC. Fetal liver bisphenol A concentrations and biotransformation gene expression reveal variable exposure and altered capacity for metabolism in humans. J Biochem Mol Toxicol. 2013; 27(2):116–23. https://doi.org/10.1002/jbt.21459. PMid:23208979. PMCid:PMC3578057 DOI: https://doi.org/10.1002/jbt.21459
Stahlhut RW, Welshons W V., Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009; 117(5):784–9. https://doi.org/10.1289/ehp.0800376. PMid:19479022. PMCid:PMC2685842 DOI: https://doi.org/10.1289/ehp.0800376
Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res. 2019; 176.
https://doi.org/10.1016/j.envres.2019.108575. PMid:31299621 DOI: https://doi.org/10.1016/j.envres.2019.108575
Kim MJ, Park YJ. Bisphenols and thyroid hormone. Endocrinol Metab. 2019; 34(4):340–8.
https://doi.org/10.3803/EnM.2019.34.4.340. PMid:31884733. PMCid:PMC6935774 DOI: https://doi.org/10.3803/EnM.2019.34.4.340
Viñas R, Jeng Y-J, Watson CS. Non-genomic effects of xenoestrogen mixtures. Int J Environ Res Public Health. 2012; 9(8):2694–714. https://doi.org/10.3390/ijerph9082694. PMid:23066391. PMCid:PMC3447581 DOI: https://doi.org/10.3390/ijerph9082694
Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007; 24(2):199–224.
https://doi.org/10.1016/j.reprotox.2007.06.004. PMid:17683900. PMCid:PMC2151845 DOI: https://doi.org/10.1016/j.reprotox.2007.06.004
Bonefeld-Jørgensen EC, Long M, Hofmeister M V, Vinggaard AM. Endocrine-disrupting potential of Bisphenol A, Bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: New data and a brief review. Environ Health Perspectt. 2007; 115:69–76.
https://doi.org/10.1289/ehp.9368. PMid:18174953. PMCid:PMC2174402 DOI: https://doi.org/10.1289/ehp.9368
Sohoni P, Sumpter J. Several environmental oestrogens are also anti-androgens. J Endocrinol. 1998; 158(3):327–39. https://doi.org/10.1677/joe.0.1580327. PMid:9846162 DOI: https://doi.org/10.1677/joe.0.1580327
Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007; 24(2):178–98. https://doi.org/10.1016/j.reprotox.2007.05.010. PMid:17628395 DOI: https://doi.org/10.1016/j.reprotox.2007.05.010
Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002; 87(11):5185–90.
https://doi.org/10.1210/jc.2002-020209. PMid:12414890 DOI: https://doi.org/10.1210/jc.2002-020209
Dietrich JW, Landgrafe G, Fotiadou EH. TSH and Thyrotropic Agonists: Key actors in thyroid homeostasis. J Thyroid Res. 2012; 2012:1–29. https://doi.org/10.1155/2012/351864. PMid:23365787. PMCid:PMC3544290 DOI: https://doi.org/10.1155/2012/351864
Meeker JD, Calafat AM, Hauser R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol. 2010; 44(4):1458–63. https://doi.org/10.1021/es9028292. PMid:20030380. PMCid:PMC2823133 DOI: https://doi.org/10.1021/es9028292
Meeker JD, Ferguson KK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the national health and nutrition examination survey (NHANES) 2007-2008. Environ Health Perspect. 2011; 119(10):1396–402. https://doi.org/10.1289/ehp.1103582. PMid:21749963. PMCid:PMC3230451 DOI: https://doi.org/10.1289/ehp.1103582
Wang F, Hua J, Chen M, Xia Y, Zhang Q, Zhao R, et al. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup Environ Med. 2012; 69(9):679–84.
https://doi.org/10.1136/oemed-2011-100529. PMid:22562051 DOI: https://doi.org/10.1136/oemed-2011-100529
Ehrlich S, Williams PL, Missmer SA, Flaws JA, Ye X, Calafat AM, et al. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012; 27(12):3583–92. https://doi.org/10.1093/humrep/des328. PMid:23014629. PMCid:PMC3501244 DOI: https://doi.org/10.1093/humrep/des328
Mínguez-Alarcón L, Gaskins AJ, Chiu YH, Williams PL, Ehrlich S, Chavarro JE, et al. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum Reprod. 2015; 30(9):2120–8. https://doi.org/10.1093/humrep/dev183. PMid:26209788. PMCid:PMC4542722 DOI: https://doi.org/10.1093/humrep/dev183
Vahedi M, Saeedi A, Poorbaghi SL, Sepehrimanesh M, Fattahi M. Metabolic and endocrine effects of bisphenol A exposure in market seller women with polycystic ovary syndrome. Environ Sci Pollut Res. 2016; 23(23):23546–50. https://doi.org/10.1007/s11356-016-7573-5. PMid:27614642 DOI: https://doi.org/10.1007/s11356-016-7573-5
Ak?n L, Kendirci M, Narin F, Kurtoglu S, Saraymen R, Kondolot M, et al. The endocrine disruptor bisphenol A may play a role in the aetiopathogenesis of polycystic ovary syndrome in adolescent girls. Acta Paediatr. 2015; 104(4):e171–7. https://doi.org/10.1111/apa.12885. PMid:25469562 DOI: https://doi.org/10.1111/apa.12885
Shen Y, Zheng Y, Jiang J, Liu Y, Luo X, Shen Z, et al. Higher urinary bisphenol A concentration is associated with unexplained recurrent miscarriage risk: Evidence from a case-control study in Eastern China. PLOS ONE. 2015; 10(5). https://doi.org/10.1371/journal.pone.0127886. PMid:26011304. PMCid:PMC4444137 DOI: https://doi.org/10.1371/journal.pone.0127886
Cantonwine D, Meeker JD, Hu H, Sánchez BN, Lamadrid-Figueroa H, Mercado-García A, et al. Bisphenol A exposure in Mexico City and risk of prematurity: A pilot nested case control study. Environ Health. 2010; 9(1):1–7. https://doi.org/10.1186/1476-069X-9-62. PMid:20955576. PMCid:PMC2965706 DOI: https://doi.org/10.1186/1476-069X-9-62
Behnia F, Peltier M, Getahun D, Watson C, Saade G, Menon R. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J Matern-Fetal Neonatal Med. 2016; 29(22):3583–9.
https://doi.org/10.3109/14767058.2016.1139570. PMid:26911979 DOI: https://doi.org/10.3109/14767058.2016.1139570
Wang IJ, Chen CY, Bornehag CG. Bisphenol A exposure may increase the risk of development of atopic disorders in children. Int J Hyg Environ Health. 2016; 219(3):311–6.
https://doi.org/10.1016/j.ijheh.2015.12.001. PMid:26765087 DOI: https://doi.org/10.1016/j.ijheh.2015.12.001
Zhang M, Dai X, Lu Y, Miao Y, Zhou C, Cui Z, et al. Melatonin protects oocyte quality from bisphenol A-induced deterioration in the mouse. J Pineal Res. 2017; 62(3).
https://doi.org/10.1111/jpi.12396. PMid:28178360 DOI: https://doi.org/10.1111/jpi.12396
Berger A, Ziv-Gal A, Cudiamat J, Wang W, Zhou C, Flaws JA. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod Toxicol. 2016; 60:39–52.
https://doi.org/10.1016/j.reprotox.2015.12.004. PMid:26746108. PMCid:PMC4866900 DOI: https://doi.org/10.1016/j.reprotox.2015.12.004
Cho YJ, Bin PS, Park JW, Oh SR, Han M. Bisphenol A modulates inflammation and proliferation pathway in human endometrial stromal cells by inducing oxidative stress. Reprod Toxicol. 2018; 81:41–9. https://doi.org/10.1016/j.reprotox.2018.06.016. PMid:29964091 DOI: https://doi.org/10.1016/j.reprotox.2018.06.016
Huang Q, Liu Y, Chen Y, Fang C, Chi Y, Zhu H, et al. New insights into the metabolism and toxicity of bisphenol A on marine fish under long-term exposure. Environ Pollut. 2018; 242:914–21.
https://doi.org/10.1016/j.envpol.2018.07.048. PMid:30373036 DOI: https://doi.org/10.1016/j.envpol.2018.07.048
Wang Q, Yang H, Yang M, Yu Y, Yan M, Zhou L, et al. Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction. Chemosphere. 2019; 221:235–45. https://doi.org/10.1016/j.chemosphere.2019.01.033. PMid:30640006 DOI: https://doi.org/10.1016/j.chemosphere.2019.01.033
Cariati F, Carbone L, Conforti A, Bagnulo F, Peluso SR, Carotenuto C, et al. Bisphenol A-Induced epigenetic changes and its effects on the male reproductive system. Front Endocrinol. 2020; 11:1–13. https://doi.org/10.3389/fendo.2020.00453. PMid:32849263. PMCid:PMC7406566 DOI: https://doi.org/10.3389/fendo.2020.00453
Li DK, Zhou Z, Miao M, He Y, Wang J, Ferber J, et al. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril. 2011; 95(2):625–30. https://doi.org/10.1016/j.fertnstert.2010.09.026. PMid:21035116 DOI: https://doi.org/10.1016/j.fertnstert.2010.09.026
Wisniewski P, Romano RM, Kizys MML, Oliveira KC, Kasamatsu T, Giannocco G, et al. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicology. 2015; 329:1–9. https://doi.org/10.1016/j.tox.2015.01.002. PMid:25575453 DOI: https://doi.org/10.1016/j.tox.2015.01.002
Vitku J, Sosvorova L, Chlupacova T, Hampl R, Hill M, Sobotka V, et al. Differences in bisphenol A and estrogen levels in the plasma and seminal plasma of men with different degrees of infertility. Physiol Res. 2015; 64:303–11. https://doi.org/10.33549/physiolres.933090. PMid:26680493 DOI: https://doi.org/10.33549/physiolres.933090
Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, et al. Bisphenol A and reproductive health: Update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014; 122(8):775–86. https://doi.org/10.1289/ehp.1307728. PMid:24896072. PMCid:PMC4123031 DOI: https://doi.org/10.1289/ehp.1307728
Prins GS, Patisaul HB, Belcher SM, Vandenberg LN. CLARITY?BPA academic laboratory studies identify consistent low?dose Bisphenol A effects on multiple organ systems. Basic Clin Pharmacol Toxicol. 2019; 125(S3):14–31. https://doi.org/10.1111/bcpt.13125. PMid:30207065. PMCid:PMC6414289 DOI: https://doi.org/10.1111/bcpt.13125
Castellini C, Totaro M, Parisi A, D'Andrea S, Lucente L, Cordeschi G, et al. Bisphenol A and male fertility: Myths and realities. Front Endocrinol. 2020; 11:1–10.
https://doi.org/10.3389/fendo.2020.00353. PMid:32595601. PMCid:PMC7304337 DOI: https://doi.org/10.3389/fendo.2020.00353
Liu Y, Wu Y, Qin G, Chen Y, Wang X, Lin Q. Bioaccumulation and reproductive toxicity of bisphenol A in male-pregnant seahorse (Hippocampus erectus) at environmentally relevant concentrations. Sci Total Environ. 2021; 753(164). https://doi.org/10.1016/j.scitotenv.2020.141805. Mid:32911163 DOI: https://doi.org/10.1016/j.scitotenv.2020.141805
Forner-Piquer I, Fakriadis I, Mylonas CC, Piscitelli F, Di Marzo V, Maradonna F, et al. Effects of dietary bisphenol A on the reproductive function of Gilthead Sea Bream (Sparus aurata) Testes. Int J Mol Sci. 2019; 20(20):5003. https://doi.org/10.3390/ijms20205003. PMid:31658598. PMCid:PMC6835794 DOI: https://doi.org/10.3390/ijms20205003
Negintaji A, Safahieh A, Zolgharnein H, Matroodi S. Short-term induction of vitellogenesis in the immature male yellowfin seabream (Acanthopagrus latus) exposed to bisphenol A and 17β-estradiol. Toxicol Ind Health. 2018; 34(2):119–27. https://doi.org/10.1177/0748233717748099. PMid:29415642 DOI: https://doi.org/10.1177/0748233717748099
Kose O, Rachidi W, Beal D, Erkekoglu P, Fayyad?Kazan H, Kocer Gumusel B. The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE?1 cells: A comparative study. J Appl Toxicol. 2020; 40(5):643–54. https://doi.org/10.1002/jat.3934. PMid:31875995 DOI: https://doi.org/10.1002/jat.3934
De Flora S, Micale RT, La Maestra S, Izzotti A, D'Agostini F, Camoirano A, et al. Upregulation of Clusterin in prostate and DNA damage in spermatozoa from bisphenol A-treated rats and formation of DNA adducts in cultured human prostatic cells. Toxicol Sci. 2011; 122(1):45–51.
https://doi.org/10.1093/toxsci/kfr096. PMid:21536718 DOI: https://doi.org/10.1093/toxsci/kfr096
Chen Y, Wang Y, Ding G, Tian Y, Zhou Z, Wang X, et al. Association between bisphenol A exposure and Idiopathic Central Precocious Puberty (ICPP) among school-aged girls in Shanghai, China. Environ Int. 2018; 115:410–6. https://doi.org/10.1016/j.envint.2018.02.041. PMid:29650233 DOI: https://doi.org/10.1016/j.envint.2018.02.041
Berger K, Eskenazi B, Balmes J, Kogut K, Holland N, Calafat AM, et al. Prenatal high molecular weight phthalates and bisphenol A, and childhood respiratory and allergic outcomes. Pediatr Allergy Immunol. 2019; 30(1):36–46. https://doi.org/10.1111/pai.12992. PMid:30338578. PMCid:PMC6436539 DOI: https://doi.org/10.1111/pai.12992
Chen X, Bao HH, Wu WK, Yan SQ, Sheng J, Xu YY, et al. Exposure to bisphenol A during maternal pregnancy and the emotional and behavioral impact on their preschool children. Zhonghua liu xing bing xue za zhi. 2018; 39(2):188–93.
Perera F, Nolte ELR, Wang Y, Margolis AE, Calafat AM, Wang S, et al. Bisphenol A exposure and symptoms of anxiety and depression among inner city children at 10-12 years of age. Environ Res. 2016; 151:195–202. https://doi.org/10.1016/j.envres.2016.07.028. PMid:27497082. PMCid:PMC5071142 DOI: https://doi.org/10.1016/j.envres.2016.07.028
Nor ZM, Yusof SN, Ghazi HF, Isa ZM. Does Bisphenol A contribute to autism spectrum disorder? Curr Top Toxicol. 2014; 10.
Zhang QF, Bao HH, Wu WK, Yan SQ, Sheng J, Xu YY, Gu CL, Huang K, Zhu P, Cao H, Su PY. Association between early pregnancy bisphenol A exposure and sleep problems among preschool children. Zhonghua yu fang yi xue za zhi [Chinese Journal of Preventive Medicine]. 2018; 52(10):1018–22.
Jensen TK, Mustieles V, Bleses D, Frederiksen H, Trecca F, Schoeters G, et al. Prenatal bisphenol A exposure is associated with language development but not with ADHD-related behavior in toddlers from the Odense Child Cohort. Environ Res. 2019; 170:398–405.
https://doi.org/10.1016/j.envres.2018.12.055. PMid:30623887 DOI: https://doi.org/10.1016/j.envres.2018.12.055
Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gómez A, Luque N, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015; 135(2):370–8. https://doi.org/10.1016/j.jaci.2014.09.030. PMid:25445825 DOI: https://doi.org/10.1016/j.jaci.2014.09.030
Rahbar M, Swingle H, Christian M, Hessabi M, Lee M, Pitcher M, et al. Environmental exposure to dioxins, dibenzofurans, bisphenol A, and phthalates in children with and without autism spectrum disorder living near the Gulf of Mexico. Int J Environ Res Public Health. 2017; 14(11):1425.
https://doi.org/10.3390/ijerph14111425. PMid:29160842. PMCid:PMC5708064 DOI: https://doi.org/10.3390/ijerph14111425
Zhang KS, Chen HQ, Chen YS, Qiu KF, Bin ZX, Li GC, et al. Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway. Biomed Pharmacother. 2014; 68(8):1037–43. https://doi.org/10.1016/j.biopha.2014.09.003. PMid:25312822 DOI: https://doi.org/10.1016/j.biopha.2014.09.003
Tse LA, Lee PMY, Ho WM, Lam AT, Lee MK, Ng SS, et al. Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong. Environ Int. 2017; 107:1–7.
https://doi.org/10.1016/j.envint.2017.06.012. PMid:28644961 DOI: https://doi.org/10.1016/j.envint.2017.06.012
Leung YK, Govindarajah V, Cheong A, Veevers J, Song D, Gear R, et al. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk. Endocr-Relat Cancer. 2017; 24(7):365–78. https://doi.org/10.1530/ERC-17-0006. PMid:28487351. PMCid:PMC5488396 DOI: https://doi.org/10.1530/ERC-17-0006
Cuomo D, Porreca I, Cobellis G, Tarallo R, Nassa G, Falco G, et al. Carcinogenic risk and Bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol Cell Endocrinol. 2017; 457:20–34. https://doi.org/10.1016/j.mce.2017.01.027. PMid:28111205 DOI: https://doi.org/10.1016/j.mce.2017.01.027
Del Pup L, Mantovani A, Luce A, Cavaliere C, Facchini G, Di Francia R, et al. Endocrine disruptors and female cancer: Informing the patients (Review). Oncol Rep. 2015; 34(1):302–10.
https://doi.org/10.3892/or.2015.3997. PMid:25998096 DOI: https://doi.org/10.3892/or.2015.3997
Jo A, Kim H, Chung H, Chang N. Associations between Dietary Intake and Urinary Bisphenol A and phthalates levels in Korean Women of reproductive age. Int J Environ Res Public Health. 2016; 13(7):680. https://doi.org/10.3390/ijerph13070680. PMid:27399734. PMCid:PMC4962221 DOI: https://doi.org/10.3390/ijerph13070680
Yazdani M, Andresen AMS, Gjøen T. Short-term effect of bisphenol-A on oxidative stress responses in atlantic salmon kidney cell line: A transcriptional study. Toxicol Mech Methods. 2016; 26(4):295–300. https://doi.org/10.1080/15376516.2016.1177864. PMid:27117342 DOI: https://doi.org/10.1080/15376516.2016.1177864
Elshaer FM, Khalaf-Allah HMM, Bakry S. Histopathological alterations in gills of some poecilid fishes after exposure to bisphenol A. World J Fish Marine Sci. 2013; 5(6):693–700.
Alonso-Magdalena P, García-Arévalo M, Quesada I, Nadal Á. Bisphenol-A Treatment during pregnancy in mice: A new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology. 2015; 156(5):1659–70. https://doi.org/10.1210/en.2014-1952. PMid:25830705 DOI: https://doi.org/10.1210/en.2014-1952
Jiao L, Wang L, Qiu Z, Wang Q, Zhou Q, Huang X. Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. Environ Sci Pollut Res. 2015; 22(8):5877—86. https://doi.org/10.1007/s11356-014-3764-0. PMid:25352395 DOI: https://doi.org/10.1007/s11356-014-3764-0
Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA, Arunajadai S, et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol. 2013; 131(3):736–42. https://doi.org/10.1016/j.jaci.2012.12.1573. PMid:23452902. PMCid:PMC3643970 DOI: https://doi.org/10.1016/j.jaci.2012.12.1573
Zhou A, Chang H, Huo W, Zhang B, Hu J, Xia W, et al. Prenatal exposure to bisphenol A and risk of allergic diseases in early life. Pediatr Res. 2017; 81(6):851–6. https://doi.org/10.1038/pr.2017.20. PMid:28141789 DOI: https://doi.org/10.1038/pr.2017.20
Rees Clayton EM, Todd M, Dowd JB, Aiello AE. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environ Health Perspect. 2011;119(3):390-6. https://doi.org/10.1289/ehp.1002883. PMid:21062687. PMCid:PMC3060004 DOI: https://doi.org/10.1289/ehp.1002883
Yang M, Qiu W, Chen B, Chen J, Liu S, Wu M, et al. The in vitro immune modulatory effect of bisphenol A on fish macrophages via estrogen receptor ? and Nuclear Factor-?B signaling. Environ Sci Technol. 2015 ;49(3):1888–95. https://doi.org/10.1021/es505163v. PMid:25565130 DOI: https://doi.org/10.1021/es505163v
Qiu W, Yang M, Liu S, Lei P, Hu L, Chen B, et al. Toxic effects of bisphenol S showing immunomodulation in fish macrophages. Environ Sci Technol. 2018; 52(2):831–8.
https://doi.org/10.1021/acs.est.7b04226. PMid:29261303 DOI: https://doi.org/10.1021/acs.est.7b04226
Qiu W, Yang M, Liu J, Xu H, Luo S, Wong M, et al. Bisphenol S-induced chronic inflammatory stress in liver via peroxisome proliferator-activated receptor ? using fish in vivo and in vitro models. Environ Pollut. 2019; 246:963–71. https://doi.org/10.1016/j.envpol.2018.11.039. PMid:31159146 DOI: https://doi.org/10.1016/j.envpol.2018.11.039
Tian X, Takamoto M, Sugane K. Bisphenol A promotes IL-4 production by Th2 cells. Int Arch Allergy Immunol. 2003; 132(3):240–7. https://doi.org/10.1159/000074305. PMid:14646385 DOI: https://doi.org/10.1159/000074305
Guo H, Liu T, Uemura Y, Jiao S, Wang D, et al. Bisphenol A in combination with TNF-κ selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity. Cell Mol Immunol. 2010; 7(3):227–34. https://doi.org/10.1038/cmi.2010.14. PMid:20383177 PMCid:PMC4002911 DOI: https://doi.org/10.1038/cmi.2010.14
Fenichel P, Chevalier N, Brucker-Davis F. Bisphenol A: An endocrine and metabolic disruptor. Ann Endocrinol. 2013; 74(3):211–20. https://doi.org/10.1016/j.ando.2013.04.002. PMid:23796010 DOI: https://doi.org/10.1016/j.ando.2013.04.002
Delfosse V, Grimaldi M, Cavaillès V, Balaguer P, Bourguet W. Structural and functional profiling of environmental ligands for estrogen receptors. Environ Health Perspect. 2014; 122(12):1306–13.
https://doi.org/10.1289/ehp.1408453. PMid:25260197. PMCid:PMC4256047 DOI: https://doi.org/10.1289/ehp.1408453
Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of bisphenol a disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect. 2006; 114(1):106–12. https://doi.org/10.1289/ehp.8451. PMid:16393666. PMCid:PMC1332664 DOI: https://doi.org/10.1289/ehp.8451
vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, et al. Chapel Hill bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007; 24(2):131–8.
https://doi.org/10.1016/j.reprotox.2007.07.005. PMid:17768031. PMCid:PMC2967230 DOI: https://doi.org/10.1016/j.reprotox.2007.07.005
Alonso-Magdalena P, Ropero AB, Soriano S, Quesada I, Nadal A. Bisphenol-A: A new diabetogenic factor? Hormones. 2010; 9(2):118–26. https://doi.org/10.1007/BF03401277. PMid:20687395 DOI: https://doi.org/10.1007/BF03401277
Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol. 2011; 7(6):346–53. https://doi.org/10.1038/nrendo.2011.56. PMid:21467970 DOI: https://doi.org/10.1038/nrendo.2011.56
Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquié M, Gauthier BR, et al. Pancreatic insulin content regulation by the estrogen receptor ER?. PLoS ONE. 2008; 3(4).
https://doi.org/10.1371/journal.pone.0002069. PMid:18446233. PMCid:PMC2323613 DOI: https://doi.org/10.1371/journal.pone.0002069
Soriano S, Alonso-Magdalena P, García-Arévalo M, Novials A, Muhammed SJ, Salehi A, et al. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of langerhans: Role of estrogen receptor ?. PLoS One. 2012; 7(2). https://doi.org/10.1371/journal.pone.0031109. DOI: https://doi.org/10.1371/journal.pone.0031109
PMid:22347437. PMCid:PMC3275611
Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008; 116(12):1642–7.
https://doi.org/10.1289/ehp.11537. PMid:19079714. PMCid:PMC2599757 DOI: https://doi.org/10.1289/ehp.11537
Andersson H, Brittebo E. Proangiogenic effects of environmentally relevant levels of bisphenol A in human primary endothelial cells. Arch Toxicol. 2012; 86(3):465–74.
https://doi.org/10.1007/s00204-011-0766-2. PMid:22045264 DOI: https://doi.org/10.1007/s00204-011-0766-2
Marmugi A, Lasserre F, Beuzelin D, Ducheix S, Huc L, Polizzi A, et al. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology. 2014; 325:133–43. https://doi.org/10.1016/j.tox.2014.08.006. PMid:25168180 DOI: https://doi.org/10.1016/j.tox.2014.08.006
Kochukov MY, Jeng Y-J, Watson CS. Alkylphenol Xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes. Environ Health Perspect. 2009; 117(5):723–30.
https://doi.org/10.1289/ehp.0800182. PMid:19479013. PMCid:PMC2685833 DOI: https://doi.org/10.1289/ehp.0800182
Ho SM, Tang WY, De Frausto JB, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006; 66(11):5624–32. https://doi.org/10.1158/0008-5472.CAN-06-0516. PMid:16740699. PMCid:PMC2276876 DOI: https://doi.org/10.1158/0008-5472.CAN-06-0516
Rahman MS, Kwon W-S, Karmakar PC, Yoon S-J, Ryu B-Y, Pang M-G. Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect. 2017; 125(2):238–45. https://doi.org/10.1289/EHP378. PMid:27384531. PMCid:PMC5289913 DOI: https://doi.org/10.1289/EHP378
Rahman MS, Kwon WS, Ryu DY, Khatun A, Karmakar PC, Ryu BY, et al. Functional and proteomic alterations of F1 capacitated spermatozoa of adult mice following gestational exposure to bisphenol A. J Proteome Res. 2018; 17(1):524–35. https://doi.org/10.1021/acs.jproteome.7b00668. PMid:29198108 DOI: https://doi.org/10.1021/acs.jproteome.7b00668
Tennant RW, Margolin BH, Shelby MD, Zeiger E, Haseman JK, Spalding J, et al. Prediction of chemical carcinogenicity in rodents from in vitro genetc toxicity assays. Science. 1987; 236(4804):933–41. https://doi.org/10.1126/science.3554512. PMid:3554512 DOI: https://doi.org/10.1126/science.3554512
Schrader TJ, Langlois I, Soper K, Cherry W. Mutagenicity of bisphenol A (4,4'-isopropylidenediphenol) in vitro: effects of nitrosylation. Teratog Carcinog Mutagen. 2002; 22(6):425–41. https://doi.org/10.1002/tcm.10039. PMid:12395404 DOI: https://doi.org/10.1002/tcm.10039
Tsutsui T, Tamura Y, Suzuki A, Hirose Y, Kobayashi M, Nishimura H, et al. Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer. 2000; 86(2):151–4.
https://doi.org/10.1002/(SICI)1097-0215(20000415)86:2<151::AID-IJC1>3.0.CO;2-0 DOI: https://doi.org/10.1002/(SICI)1097-0215(20000415)86:2<151::AID-IJC1>3.0.CO;2-0
Takahashi S, Chi XJ, Yamaguchi Y, Suzuki H, Sugaya S, Kita K, et al. Mutagenicity of bisphenol A and its suppression by interferon-? in human RSa cells. Mutat Res Genet Toxicol Environ Mutagen. 2001; 490(2):199–207. https://doi.org/10.1016/S1383-5718(00)00161-3 DOI: https://doi.org/10.1016/S1383-5718(00)00161-3
Iso T, Watanabe T, Iwamoto T, Shimamoto A, Furuichi Y. DNA damage caused by bisphenol A and estradiol through estrogenic activity. Bio Pharm Bull. 2006; 29(2):206–10.
https://doi.org/10.1248/bpb.29.206. PMid:16462019 DOI: https://doi.org/10.1248/bpb.29.206
Tsutsui T, Tamura Y, Yagi E, Hasegawa K, Takahashi M, Maizumi N, et al. Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int J Cancer. 1998; 75(2):290–4. https://doi.org/10.1002/(SICI)1097-0215(19980119)75:2<290::AID-IJC19>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-0215(19980119)75:2<290::AID-IJC19>3.0.CO;2-H
Ochi T. Induction of multiple microtubule-organizing centers, multipolar spindles and multipolar division in cultured V79 cells exposed to diethylstilbestrol, estradiol-17? and bisphenol A. Mutat Res - Fund Mol M. 1999; 431(1):105–21. https://doi.org/10.1016/S0027-5107(99)00190-6 DOI: https://doi.org/10.1016/S0027-5107(99)00190-6
Can A, Semiz O, Cinar O. Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol Hum Reprod. 2005; 11(6):389–96.
https://doi.org/10.1093/molehr/gah179. PMid:15879462 DOI: https://doi.org/10.1093/molehr/gah179
Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, et al. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr Bio. 2003; 13(7):546–53.
https://doi.org/10.1016/S0960-9822(03)00189-1 DOI: https://doi.org/10.1016/S0960-9822(03)00189-1
Baršiene J, Šyvokiene J, Bjornstad A. Induction of micronuclei and other nuclear abnormalities in mussels exposed to bisphenol A, diallyl phthalate and tetrabromodiphenyl ether-47. Aquat Toxicol. 2006; 78:S105–8. https://doi.org/10.1016/j.aquatox.2006.02.023. PMid:16616789 DOI: https://doi.org/10.1016/j.aquatox.2006.02.023
Bolognesi C, Perrone E, Roggieri P, Pampanin DM, Sciutto A. Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat Toxicol. 2006; 78:S93–8. https://doi.org/10.1016/j.aquatox.2006.02.015. PMid:16600396 DOI: https://doi.org/10.1016/j.aquatox.2006.02.015
Allard P, Colaiácovo MP. Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci U S A. 2010; 107(47):20405–10.
https://doi.org/10.1073/pnas.1010386107. PMid:21059909. PMCid:PMC2996676 DOI: https://doi.org/10.1073/pnas.1010386107
Ito Y, Ito T, Karasawa S, Enomoto T, Nashimoto A, Hase Y, et al. Identification of DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs) as a novel target of bisphenol A. PLoS ONE. 2012; 7(12). https://doi.org/10.1371/journal.pone.0050481. PMid:23227178. PMCid:PMC3515620 DOI: https://doi.org/10.1371/journal.pone.0050481
Kim S, Mun G, Choi E, Kim M, Jeong JS, Kang KW, et al. Submicromolar bisphenol A induces proliferation and DNA damage in human hepatocyte cell lines in vitro and in juvenile rats in vivo. Food Chem Toxicol. 2018; 111:125–32. https://doi.org/10.1016/j.fct.2017.11.010. PMid:29128613 DOI: https://doi.org/10.1016/j.fct.2017.11.010
Herz C, Tran HTT, Schlotz N, Michels K, Lamy E. Low-dose levels of bisphenol A inhibit telomerase via ER/GPR30-ERK signalling, impair DNA integrity and reduce cell proliferation in primary PBMC. Sci Rep. 2017; 7(1). https://doi.org/10.1038/s41598-017-15978-2. PMid:29192164. PMCid:PMC5709422 DOI: https://doi.org/10.1038/s41598-017-15978-2
Radwan M, Wielgomas B, Dziewirska E, Radwan P, Ka?u?ny P, Klimowska A, et al. Urinary bisphenol A levels and male fertility. Am J Men's Health. 2018; 12(6):2144–51.
https://doi.org/10.1177/1557988318799163. PMid:30261816. PMCid:PMC6199454 DOI: https://doi.org/10.1177/1557988318799163
Campen KA, Kucharczyk KM, Bogin B, Ehrlich JM, Combelles CMH. Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Hum Reprod. 2018; 33(5):895–904. https://doi.org/10.1093/humrep/dey050. PMid:29538760. PMCid:PMC5925783 DOI: https://doi.org/10.1093/humrep/dey050
Buka I, Osornio-Vargas A, Walker R. Canada declares bisphenol A a "dangerous substance": Questioning the safety of plastics. Paediatr Child Health. 2009; 14(1):11–3.
https://doi.org/10.1093/pch/14.1.11a. PMid:19436577. PMCid:PMC2666039 DOI: https://doi.org/10.1093/pch/14.1.11a
Usman A, Ahmad M. From BPA to its analogues: Is it a safe journey? Chemosphere. 2016; 158:131–42. https://doi.org/10.1016/j.chemosphere.2016.05.070. PMid:27262103 DOI: https://doi.org/10.1016/j.chemosphere.2016.05.070
Yonten V, Ince M, Tanyol M, Yildirim N. Adsorption of bisphenol A from aqueous solutions by Pleurotus eryngii immobilized on Amberlite XAD-4 using as a new adsorbent. Desalin Water Treat. 2016; 57(47):22362–9. https://doi.org/10.1080/19443994.2015.1130659 DOI: https://doi.org/10.1080/19443994.2015.1130659
Park HS, Koduru JR, Choo KH, Lee B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J Hazard Mater. 2015; 286:315–24. https://doi.org/10.1016/j.jhazmat.2014.11.012. PMid:25594935 DOI: https://doi.org/10.1016/j.jhazmat.2014.11.012
Qin FX, Jia SY, Liu Y, Li HY, Wu SH. Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desalin Water Treat. 2015; 54(1):93–102.
https://doi.org/10.1080/19443994.2014.883331 DOI: https://doi.org/10.1080/19443994.2014.883331