DNA Damage and Repair in different Tissues of Fresh Water Fish, Channa punctata after Acute and Subchronic Exposure to bisphenol A

Jump To References Section

Authors

  • Department of Biosciences, UIBT, Chandigarh University, Mohali - 140413, Punjab ,IN
  • Department of Biosciences, UIBT, Chandigarh University, Mohali - 140413, Punjab ,IN
  • Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005 ,IN

DOI:

https://doi.org/10.18311/ti/2022/v29i3/28352

Keywords:

Bisphenol A, Channa punctata, DNA Damage, Genotoxic, Subchronic Exposure

Abstract

The present study was conducted to investigate the genotoxic effect of Bis-Phenol A (BPA) after acute and subchronic exposure in different tissues of Channa punctata. The recovery in DNA damage was also ascertained after 30 days of cessation of exposure. Fish were exposed to different sublethal concentrations of BPA along with two controls i.e., with positive (acetone) and negative (water) controls for 96h (acute exposure) and 60 days (subchronic exposure) and after that fish were allowed to recover for 30 days in freshwater. The blood, liver, and gill tissue samples were collected at 24, 48, 72 and 96h for acute exposure and after 20, 40, and 60 days post-exposure for subchronic exposure. Exposed groups showed significantly higher DNA damage in both acute and subchronic exposure as compared to control groups. In the case of acute exposure, the highest damage was observed at 24 h of exposure followed by a decline in the value of all the parameters, while in the later hours of exposure these values further increased. On the other hand, in the case of sub-chronic exposure, the highest damage was observed after 60 days of exposure. Recovery experiment showed a decrease in the values of all the parameters studied. The result of the study clearly showed that BPA caused DNA damage in Channa punctata after acute as well as subchronic exposure.

Downloads

Download data is not yet available.

Published

2022-12-12

How to Cite

Sharma, P., Sharma, K., & Chadha, P. (2022). DNA Damage and Repair in different Tissues of Fresh Water Fish, <i>Channa punctata</i> after Acute and Subchronic Exposure to bisphenol A. Toxicology International, 29(3), 299–309. https://doi.org/10.18311/ti/2022/v29i3/28352

Issue

Section

Research Articles
Received 2021-08-03
Accepted 2022-01-11
Published 2022-12-12

 

References

Caliman FA, Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment - A review. CLEAN-Soil Air Water. 2009; 37(4-5):277-303. https://doi.org/10.1002/ clen.200900038. DOI: https://doi.org/10.1002/clen.200900038

Tijani JO, Fatoba OO, Babajide OO, Petrik LF. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environ Chem Lett. 2015; 14(1):27-49. https:// doi.org/10.1007/s10311-015-0537-z. DOI: https://doi.org/10.1007/s10311-015-0537-z

Darbre PD. Endocrine disruption and human health. In: Academic Press; 2015.

Vieira WT, de Farias MB, Spaolonzi MP, da Silva MGC, Vieira MGA. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ Chem Lett. 2020; 18(4):1113-1143. https://doi.org/10.1007/s10311-020-01000-1. DOI: https://doi.org/10.1007/s10311-020-01000-1

Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocr Rev. 2009; 30(4):293. https://doi.org/10.1210/er.2009-0002. PMid: 19502515 PMCid:PMC2726844. DOI: https://doi.org/10.1210/er.2009-0002

Burks H, Pashos N, Martin E, Mclachlan J, Bunnell B, Burow M. Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology. Mol Cell Endocrinol. 2017; 457:13-19. https://doi. org/10.1016/j.mce.2016.12.010. PMid:28012841. DOI: https://doi.org/10.1016/j.mce.2016.12.010

Cargnelutti F, Di Nisio A, Pallotti F, Sabovic I, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Effects of endocrine disruptors on fetal testis development, male puberty, and transition age. Endocrine. 2020; 72(2):358-374. https:// doi.org/10.1007/s12020-020-02436-9. PMid:32757113 PMCid:PMC8128728. DOI: https://doi.org/10.1007/s12020-020-02436-9

Goldinger DM, Demierre AL, Zoller O, Rupp H, Reinhard H, Magnin R, Becker TW, Bourqui-Pittet M. Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regul Toxicol Pharmacol. 2015; 71(3):453-462. https://doi.org/10.1016/j.yrtph. 2015.01.002. PMid:25579646. DOI: https://doi.org/10.1016/j.yrtph.2015.01.002

Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect. 2012; 120(7):935-943. https://doi.org/10.1289/ ehp.1104052. PMid:22398195 PMCid:PMC3404651. DOI: https://doi.org/10.1289/ehp.1104052

Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull. 2011; 62(8):1683-1692. https://doi. org/10.1016/j.marpolbul.2011.06.004. PMid:21719036. DOI: https://doi.org/10.1016/j.marpolbul.2011.06.004

Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 2020; 17:1212. https://doi.org/10.3390/ijerph17041212. PMid: 32069998 PMCid:PMC7068600. DOI: https://doi.org/10.3390/ijerph17041212

Park SR, Park SJ, Jeong MJ, Choi JC, Kim MK. Fast and simple determination and exposure assessment of bisphenol A, phenol, p-tert-butylphenol, and diphenylcarbonate transferred from polycarbonate food-contact materials to food simulants. Chemosphere. 2018; 203:300-306. https://doi.org/10.1016/j.chemosphere. 2018.03.185. PMid:29625319. DOI: https://doi.org/10.1016/j.chemosphere.2018.03.185

Bowes DA, Halden RU. Breast cancer and dietary intake of endocrine disruptors: A review of recent literature. Curr Pathobiol Rep. 2019; 7(3):41-46. https://doi. org/10.1007/s40139-019-00199-1. DOI: https://doi.org/10.1007/s40139-019-00199-1

Darbre PD. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res. 2020; 112(17):1300-1307. https://doi. org/10.1002/bdr2.1778. PMid:32720473. DOI: https://doi.org/10.1002/bdr2.1778

Mileva G, Baker SL, Konkle ATM, Bielajew C. Bisphenol-A: Epigenetic reprogramming and effects on reproduction and behavior. Int J Environ Res Public Health. 2014; 11:7537-7561. https://doi. org/10.3390/ijerph110707537. PMid:25054232 PMCid: PMC4113893. DOI: https://doi.org/10.3390/ijerph110707537

Shafei A, Matbouly M, Mostafa E, Al Sannat S, Abdelrahman M, Lewis B, Muhammad B, Mohamed S, Mostafa RM. Stop eating plastic, molecular signaling of bisphenol A in breast cancer. Environ Sci Pollut Res. 2018; 25: 23624-23630. https://doi.org/10.1007/s11356- 018-2540-y PMid:29959737. DOI: https://doi.org/10.1007/s11356-018-2540-y

Porreca I, Ulloa Severino L, D’Angelo F, Cuomo D, Ceccarelli M, Altucci L, Amendola E, Nebbioso A, Mallardo M, De Felice M, Ambrosino C. “Stockpile” of slight transcriptomic changes determines the indirect genotoxicity of low-dose BPA in thyroid cells. PLoS ONE. 2016; 11(3):e0151618. https://doi. org/10.1371/journal.pone.0151618. PMid:26982218 PMCid:PMC4794173. DOI: https://doi.org/10.1371/journal.pone.0151618

Jalal N, Surendranath AR, Pathak JL, Yu S, Chung CY. Bisphenol A (BPA) the mighty and the mutagenic. Toxicol Rep. 2018; 5:76-84. https://doi. org/10.1016/j.toxrep.2017.12.013. PMid:29854579 PMCid:PMC5977157. DOI: https://doi.org/10.1016/j.toxrep.2017.12.013

Sharma P, Chadha P. Bisphenol A induced toxicity in blood cells of freshwater fish Channa punctata after acute exposure. Saudi J Biol Sci. 2021; 28(8):4738- 4750. https://doi.org/10.1016/j.sjbs.2021.04.088. PMid: 34354462 PMCid:PMC8324972. DOI: https://doi.org/10.1016/j.sjbs.2021.04.088

Ahuja R, Saran R. Alkaline single cell gel electrophoresis assay I. Protoc Cytol Genet. 1999; 34:57-62.

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantization of low levels of DNA damage in individual cells. Exp Cell Res. 1988; 175(1):184-191. https://doi.org/10.1016/0014-4827(88)90265-0. DOI: https://doi.org/10.1016/0014-4827(88)90265-0

Bolognesi C, Cirillo S, Chipman JK. Comet assay in ecogenotoxicology: Applications in Mytilus sp. Mutat Res Genet Toxicol Environ Mutagen. 2019; 842:50- 59. https://doi.org/10.1016/j.mrgentox.2019.05.004. PMid:31255226. DOI: https://doi.org/10.1016/j.mrgentox.2019.05.004

Ullah S, Begum M, Dhama K, Ahmad S, Hassan S, Alam I. Malathion induced DNA damage in freshwater fish, Labeo rohita (Hamilton, 1822) using alkaline single cell gel electrophoresis. Asian J Anim Vet Adv. 2016; 11(2):98-105. https://doi.org/10.3923/ ajava.2016.98.105. DOI: https://doi.org/10.3923/ajava.2016.98.105

Rajan AP, Anandan S. Investigation of carcinogenic and mutagenic property of food colour using catfish Clarias Batrachus by using alkaline single-cell gel electrophore sis (comet) assay and micronucleus assay. Int J Med Res Pharmacol Sci. 2017; 4(7):29-34.

Sharma M, Chadha P. Widely used non-ionic surfactant 4-nonylphenol: showing genotoxic effects in various tissues of Channa punctatus. Environ Sci Pollut Res. 2017; 24(12):11331-11339. https://doi.org/10.1007/s11356- 017-8759-1. PMid:28303538. DOI: https://doi.org/10.1007/s11356-017-8759-1

Sharma P, Chadha P, Saini HS. Tetrabromobisphenol A induced oxidative stress and genotoxicity in fish Channa punctatus. Drug Chem Toxicol. 2019; 42(6):559-564. https://doi.org/10.1080/01480545.2018.1441864. PMid:29536771. DOI: https://doi.org/10.1080/01480545.2018.1441864

Ramos C, Ladeira C, Zeferino S, Dias A, Faria I, Cristovam E, Gomes M, Ribeiro E. Cytotoxic and genotoxic effects of environmental relevant concentrations of bisphenol A and interactions with doxorubicin. Mutat Res Genet Toxicol Environ Mutagen. 2019; 838:28- 36. https://doi.org/10.1016/j.mrgentox.2018.11.009. PMid:30678825. DOI: https://doi.org/10.1016/j.mrgentox.2018.11.009

Xin F, Jiang L, Liu X, Geng C, Wang W, Zhong L, Yang G, Chen M. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2014; 769:29-33. https://doi. org/10.1016/j.mrgentox.2014.04.019. PMid:25344109. DOI: https://doi.org/10.1016/j.mrgentox.2014.04.019

Kose O, Rachidi W, Beal D, Fayyad-kazan H, Gumusel BK. The effects of different bisphenol derivatives on oxidative stress , DNA damage and DNA repair in RWPE-1 cells : A comparative study. J Appl Toxicol. 2020; 40(5):643-654. https://doi.org/10.1002/jat.3934. PMid:31875995. DOI: https://doi.org/10.1002/jat.3934

Eid JI, Eissa SM, El-Ghor AA. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring. J Basic Appl Zool. 2015; 71:10-19. https://doi.org/10.1016/j.jobaz.2015.01.006. DOI: https://doi.org/10.1016/j.jobaz.2015.01.006

Wu HJ, Liu C, Duan WX, Xu SC, He MD, Chen CH, Wang Y, Zhou Z, Yu ZP, Zhang L, Chen Y. Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats. Mutat Res Genet Toxicol Environ Mutagen. 2013; 752(1-2):57-67. https://doi. org/10.1016/j.mrgentox.2013.01.005. PMid:23402883 DOI: https://doi.org/10.1016/j.mrgentox.2013.01.005

Anet A, Olakkaran S, Kizhakke Purayil A, Hunasanahally Puttaswamygowda G. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. J Hazard Mater. 2019;370:42-53. https://doi. org/10.1016/j.jhazmat.2018.07.050. PMid:30213494. DOI: https://doi.org/10.1016/j.jhazmat.2018.07.050

Saleha Banu B, Danadevi K, Rahman MF, Ahuja YR, Kaiser J. Genotoxic effect of monocrotophos to sentinel species using comet assay. Food Chem Toxicol. 2001; 39(4):361-366. https://doi.org/10.1016/S0278- 6915(00)00141-1. DOI: https://doi.org/10.1016/S0278-6915(00)00141-1

Miyamae Y, Iwasaki K, Kinae N, Tsuda S, Murakami M, Tanaka M, Sasaki YF. Detection of DNA lesions induced by chemical mutagens using the single-cell gel electrophoresis (Comet) assay. 2. Relationship between DNA migration and alkaline condition. Mutat Res Genet Toxicol Environ Mutagen. 1997; 393(1-2):107- 113. https://doi.org/10.1016/S1383-5718(97)00091-0. DOI: https://doi.org/10.1016/S1383-5718(97)00091-0

Wong CKC, Yeung HY, Woo PS, Wong MH. Specific expression of cytochrome P4501A1 gene in gill, intestine and liver of tilapia exposed to coastal sediments. Aquat Toxicol. 2001; 54(1-2):69-80. https://doi. org/10.1016/S0166-445X(00)00173-9 DOI: https://doi.org/10.1016/S0166-445X(00)00173-9

Cavalcante DGSM, Martinez CBR, Sofia SH. Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat Res Genet Toxicol Environ Mutagen. 2008; 655(1-2):41-46. https://doi.org/10.1016/j.mrgentox.2008.06.010. PMid:18638566. DOI: https://doi.org/10.1016/j.mrgentox.2008.06.010

Gülsoy N, Yavaş C, Mutlu Ö. Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay. EXCLI Journal. 2015; 14:890-899.

Pellacani C, Buschini A, Galati S, Mussi F, Franzoni S, Costa LG. Evaluation of DNA damage induced by 2 polybrominated diphenyl ether flame retardants (BDE-47 and BDE-209) in SK-N-MC cells. Int J Toxicol. 2012; 31(4):372-379. https://doi. org/10.1177/1091581812449663. PMid:22710639. DOI: https://doi.org/10.1177/1091581812449663

Wang B, Wang H, Han D, Chen J, Yin Y. Studying the mixture effects of brominated flame retardants and metal ions by comet assay. Environ Pollut. 2020; 267:115677. https://doi.org/10.1016/j.envpol.2020.115677. PMid:33254668. DOI: https://doi.org/10.1016/j.envpol.2020.115677

Park SY, Choi J. Genotoxic effects of nonylphenol and bisphenol A exposure in aquatic biomonitoring species: Freshwater crustacean, Daphnia magna, and aquatic midge, Chironomus riparius. Bull Environ Contam Toxicol. 2009; 83(4):463-468. https://doi.org/10.1007/ s00128-009-9745-1. PMid:19475328. DOI: https://doi.org/10.1007/s00128-009-9745-1

Chen R, Hou R, Hong X, Yan S, Zha J. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo: A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics. Environ Int. 2019; 130:104914. https://doi.org/10.1016/j.envint.2019.104914. PMid:31226563. DOI: https://doi.org/10.1016/j.envint.2019.104914

Tiwari D, Kamble J, Chilgunde S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanage G. Clastogenic and mutagenic effects of bisphenol A: An endocrine disruptor. Mutat Res Genet Toxicol Environ Mutagen. 2012; 743(1-2):83-90. https://doi.org/10.1016/j. mrgentox.2011.12.023. PMid:22245107. DOI: https://doi.org/10.1016/j.mrgentox.2011.12.023

Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen. 2017; 58(2):60-71. https://doi.org/10.1002/em.22072. PMid:28181297 PMCid:PMC5458620. DOI: https://doi.org/10.1002/em.22072

Hussain R, Mahmood F, Khan MZ, Khan A, Muhammad F. Pathological and genotoxic effects of atrazine in male Japanese quail (Coturnix japonica). Ecotoxicology. 2011; 20(1):1-8. https://doi.org/10.1007/s10646-010-0515-y. PMid:20607394. DOI: https://doi.org/10.1007/s10646-010-0515-y

Hussain R, Ali F, Javed MT, Jabeen G, Ghaffar A, Khan I, Liaqat S, Hussain T, Abbas RZ, Riaz A, Gul ST. Clinicohematological, serum biochemical, genotoxic and histopathological effects of trichlorfon in adult cockerels. Toxin Reviews. 2019; 1-9. https://doi.org/10.1080/1 5569543.2019.1673422.

Ghazanfar M, Shahid S, Qureshi IZ. Vitamin C attenuates biochemical and genotoxic damage in common carp (Cyprinus carpio) upon joint exposure to combined toxic doses of fipronil and buprofezin insecticides. Aquat Toxicol. 2018; 196:43-52. https://doi.org/10.1016/j. aquatox.2017.12.015. PMid:29331520. DOI: https://doi.org/10.1016/j.aquatox.2017.12.015

Ghaffar A, Hussain R, Noreen S, Abbas G, Chodhary IR, Khan A, Ahmed Z, Khan MK, Akram K, Ulhaq M, Ahmad N. Dose and time-related pathological and genotoxic studies on thiamethoxam in fresh water fish (Labeo rohita) in Pakistan. Pak Vet J. 2020; 40(2):151- 156. https://doi.org/10.29261/pakvetj/2020.002. DOI: https://doi.org/10.29261/pakvetj/2020.002

Ali D, Falodah FA, Almutairi B, Alkahtani S, Alarifi S. Assessment of DNA damage and oxidative stress in juvenile Channa punctata (Bloch) after exposure to multi-walled carbon nanotubes. Environ Toxicol. 2020; 35(3):359-367. https://doi.org/10.1002/tox.22871 PMid:31710160. DOI: https://doi.org/10.1002/tox.22871

Sharma M, Chadha P. From genotoxicity induction to recovery in different organs in fish Channa punctata after sub chronic exposure to 4- nonylphenol. Toxicol Int. 2020; 27:8-13.

Guilherme S, Santos M, Gaivão I, Pacheco M. Are DNA-damaging effects induced by herbicide formulations (Roundup® and Garlon®) in fish transient and reversible upon cessation of exposure? Aquat Toxicol. 2014; 155:213-221. https://doi.org/10.1016/j.aquatox. 2014.06.007. PMid:25058560. DOI: https://doi.org/10.1016/j.aquatox.2014.06.007

Sharma M, Chadha P. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctata after sub chronic exposure. Drug Chem Toxicol. 2016; 40(3):320-325. https://doi.org/10.1080/01480545.2016.1223096. PMid:27580929. DOI: https://doi.org/10.1080/01480545.2016.1223096

Most read articles by the same author(s)