Melatonin Ameliorates 2,4-Dichlorophenoxyacetic Acid Induced Testicular Steroidogenesis Upset in Mice: An In Vivo and In Silico Study
DOI:
https://doi.org/10.18311/ti/2022/v29i2/29271Keywords:
2, 4-Dichlorophenoxyacetic Acid, Melatonin, Mice, Mitigation, Molecular Docking, SteroidogenesisAbstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is used as a selective herbicide and associated with a variety of toxicities in mammals. In contrast, melatonin is an antioxidant that promotes the elimination of free radicals. In the present study, the protective effects of melatonin (10 mg/kg body weight) against 2,4- D (low, mid, and high dose-16.5, 33.0, and 66.0 mg/kg body weight) induced testicular steroidogenesis alteration were examined using in vivo and in silico models. Doses of 2,4-D and melatonin were administered orally for 28 days. The evaluated parameters were body weight, total protein, markers for male reproductive function, and steroidogenesis i.e. testis weight, total lipid, cholesterol, testosterone, 3 beta-hydroxysteroid dehydrogenase, 17 betahydroxysteroid dehydrogenase, total sperm count, sperm motility, and sperm viability along with the histopathology of the testis. The statistical significant value was considered at p<0.05. Molecular docking study was performed for interaction of 2,4-D and melatonin with steroid binding proteins. In vivo results revealed that 2,4-D treatment showed a significant dose-dependent alteration in above all studied parameters. No significant auto-recovery was observed in the withdrawal study, on the contrarily, the altered parameters were normalized and comparable to control when melatonin was given alone and in combination with 2,4-D. In silico results also demonstrated that the binding affinity of melatonin with steroid binding proteins is higher than 2,4-D. Collectively, these in vivo and in silico findings indicated that 2,4-D induced testicular toxicity accompanied by steroidogenesis upset and can be reduced by melatonin significantly by interacting directly and strongly with studied molecular markers.Downloads
Published
How to Cite
Issue
Section
Accepted 2022-02-11
Published 2022-07-15
References
Zhang WJ, Jiang FB, Ou JF. Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci. 2011; 1(2):125-44. http://www.iaees. org/publications/journals/piaees/articles/2011-1(2)/6- Zhang-Abstract.asp
Peterson MA, McMaster SA, Riechers DE, Skelton J, Stahlman PW. 2,4-D past, present, and future: A review. Weed Technol. 2016; 30(2):303-45. https://doi. org/10.1614/WT-D-15-00131.1
Tomlin CD. The pesticide manual: A world compendium. British Crop Production Council; 2009.
Aylward LL, Hays SM. Biomonitoring Equivalents (BE) dossier for 2,4-dichlorophenoxyacetic acid (2,4-D) (CAS No. 94-75-7). Regul Toxicol Pharmacol. 2008; 51(3):S37-48. PMid: 18579270. https://doi.org/10.1016/j. yrtph.2008.05.006
Sharma A, Mollier J, Brocklesby RWK, Caves C, Jayasena CN, Minhas S. Endocrine-disrupting chemicals and male reproductive health. Reprod Med Biol. 2020; 19(3):243-53. PMid: 32684823 PMCid: PMC7360961. https://doi.org/10.1002/rmb2.12326
Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006; 250(1-2):66-9. PMid: 16412557. https://doi.org/10.1016/j. mce.2005.12.026
Jab?o?ska-Trypu? A, Wo?ejko E, Wydro U, Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J Environ Sci Health B. 2017; 52(7):483-94. PMid: 28541098. https://doi.org/10.1080/03601234.201 7.1303322
Astiz M, de Catalfo GE, García MN, Galletti SM, Errecalde AL, de Alaniz MJ, et al. Pesticide-induced decrease in rat testicular steroidogenesis is differentially prevented by lipoate and tocopherol. Ecotoxicol Environ Saf. 2013; 91:129-38. PMid: 23465731. https://doi. org/10.1016/j.ecoenv.2013.01.022
Marouani N, Tebourbi O, Cherif D, Hallegue D, Yacoubi MT, Sakly M, et al. Effects of oral administration of 2,4-dichlorophenoxyacetic acid (2,4-D) on reproductive parameters in male Wistar rats. Environ Sci Pollut Res Int. 2017; 24(1):519-26. PMid: 27734311. https://doi. org/10.1007/s11356-016-7656-3
Tan Z, Zhou J, Chen H, Zou Q, Weng S, Luo T, et al. Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro. J Toxicol Sci. 2016; 41(4):543-9. PMid: 27432240. https://doi.org/10.2131/jts.41.543
Penitente-Filho JM, Neves JG, da Matta SL, Torres CA, Chaya AY, de Paula TA. Morphometric evaluation of the spermatogenic process of adults wistar rats exposed to the 2,4-diclorophenoxiacetic acid associated to picloram (TORDON 2,4-D® 64/240 BR). Acta Vet Bras. 2014; 8(1):47-53. https://doi.org/10.21708/avb.2014.8.1.3544
Joshi SC, Tibrewal PR, Sharma AK, Sharma PR. Evaluation of toxic effect of 2,4-D (2,4-dichlorophenoxyacetic acid) on fertility and biochemical parameters of male reproductive system of albino rats. Int J Pharm Pharm Sci. 2012; 4(3):338-42. https://innovareacademics. in/journal/ijpps/Vol4Suppl3/3757.pdf
Mi Y, Zhang C, Taya K. Quercetin protects spermatogonial cells from 2,4-d-induced oxidative damage in embryonic chickens. J Reprod Dev. 2007; 53(4):749-54. PMid: 17389777. https://doi.org/10.1262/jrd.19001
Zhang D, Wu Y, Yuan Y, Liu W, Kuang H, Yang J, et al. Exposure to 2,4-dichlorophenoxyacetic acid induces oxidative stress and apoptosis in mouse testis. Pestic Biochem Physiol. 2017; 141:18-22. PMid: 28911736. https://doi.org/10.1016/j.pestbp.2016.10.006
Harada Y, Tanaka N, Ichikawa M, Kamijo Y, Sugiyama E, Gonzalez FJ, et al. PPARβ-dependent cholesterol/ testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Arch Toxicol. 2016; 90(12):3061-71. PMid: 26838045 PMCid: PMC6334304. https://doi. org/10.1007/s00204-016-1669-z
Amaral FG, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 2018; 62(4):472-9. PMid: 30304113. https://doi. org/10.20945/2359-3997000000066
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, et al. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci. 2019; 228:228-41. PMid: 31077716. https://doi.org/10.1016/j.lfs.2019.05.009
Yu K, Deng SL, Sun TC, Li YY, Liu YX. Melatonin regulates the synthesis of steroid hormones on male reproduction: a review. Molecules. 2018; 23(2):447. PMid: 29462985 PMCid: PMC6017169. https://doi. org/10.3390/molecules23020447
Indian National Science Academy (INSA). Guidelines for care and use of animals in scientific research. New Delhi, India; 2000.
Amer SM, Aly FA. Genotoxic effect of 2,4-dichlorophenoxy acetic acid and its metabolite 2, 4-dichlorophenol in mouse. Mutat Res. 2001; 494(1-2):1-12. PMid: 11423340. https://doi.org/10.1016/S1383-5718(01)00146-2
Upadhyaya AM, Rao MV, Jhala DD. Ameliorative effects of melatonin against 2,4-dichlorophenoxyacetic acid toxicity in kidney of mice-A histological study. Asian J Pharm Clin Res. 2018; 11(1):78-82. https://doi. org/10.22159/ajpcr.2018.v11i1.21829
Upadhyaya AM, Rao MV, Jhala DD. Melatonin attenuates 2,4-dichlorophenoxyacetic acid toxicity in kidney of mice. Toxicol Int. 2019; 25(2):130-8. http://www.informaticsjournals. in/index.php/toxi/article/view/23566
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193:265-75.
Zollner N, Kirsch K. Microdetermination of lipids by the sulfo-phospho-vanillin reaction. Z Ges Exp Med. 1962; 135:545-61.
Zlatkis A, Zak B, Boyle AJ. A new method for the direct determination of serum cholesterol. J Lab Clin Med. 1953; 41(3):486-92. PMid: 13035283. https://www.translationalres. com/article/0022-2143(53)90125-5/fulltext
Talalay P. [69] Hydroxysteroid dehydrogenases: Hydroxysteroid+ DPN+(TPN+)? Ketosteroid DPNH (TPNH)+ H+. Methods Enzymol. 1962; 5:512-26. Academic Press. https://doi.org/10.1016/ S0076-6879(62)05269-6
WHO laboratory manual for the examination and processing of human semen, fifth edition. Geneva: World Health Organization. 2010. https://apps.who.int/iris/ handle/10665/44261
Talbot P, Chacon RS. A triple?stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool. 1981; 215(2):201-8. PMid: 6168732. https://doi. org/10.1002/jez.1402150210
Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harbor Protoc. 2014; 2014(6):655-8. PMid: 24890205. https://doi.org/10.1101/pdb.prot073411
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-61. PMid: 19499576 PMCid: PMC3041641. https://doi.org/10.1002/jcc.21334
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021; 49(D1):D1388-95. PMid: 33151290 PMCid: PMC7778930. https://doi. org/10.1093/nar/gkaa971
Pereira de Jésus?Tran K, Côté PL, Cantin L, Blanchet J, Labrie F, Breton R. Comparison of crystal structures of human androgen receptor ligand?binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Protein Sci. 2006; 15(5):987-99. PMid: 16641486 PMCid: PMC2242507. https://doi.org/10.1110/ps.051905906
Benach J, Filling C, Oppermann UC, Roversi P, Bricogne G, Berndt KD, et al. Structure of bacterial 3?/17β- hydroxysteroid dehydrogenase at 1.2 Šresolution: a model for multiple steroid recognition. Biochemistry. 2002; 41(50):14659-68. PMid: 12475215. https://doi. org/10.1021/bi0203684
Savino S, Ferrandi EE, Forneris F, Rovida S, Riva S, Monti D, et al. Structural and biochemical insights into 7??hydroxysteroid dehydrogenase stereoselectivity. Proteins. 2016; 84(6):859-65. PMid: 27006087. https:// doi.org/10.1002/prot.25036
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000; 28(1):235-42. PMid: 10592235 PMCid: PMC102472. https://doi.org/10.1093/nar/28.1.235
BIOVIA, Dassault Systèmes, (BIOVIA Discovery Studio), v.16.1.0.15350, San Diego: Dassault Systèmes; 2016.
Shafeeq S, Mahboob T. Magnesium supplementation ameliorates toxic effects of 2,4-dichlorophenoxyacetic acid in rat model. Hum Exp Toxicol. 2020; 39(1):47-58. PMid: 31496303. https://doi.org/10.1177/0960327119874428
Troudi A, Sefi M, Amara IB, Soudani N, Hakim A, Zeghal KM, et al. Oxidative damage in bone and erythrocytes of suckling rats exposed to 2,4-dichlorophenoxyacetic acid. Pestic Biochem Physiol. 2012; 104(1):19-27. https://doi. org/10.1016/j.pestbp.2012.06.005
Tayeb W, Nakbi A, Trabelsi M, Attia N, Miled A, Hammami M. Hepatotoxicity induced by sub-acute exposure of rats to 2,4-Dichlorophenoxyacetic acid based herbicide “Désormone lourd”. J Hazard Mater. 2010; 180(1-3):225-33. PMid: 20447766. https://doi. org/10.1016/j.jhazmat.2010.04.018
Vawda AI, Mandlwana JG. The effects of dietary protein deficiency on rat testicular function. Andrologia. 1990; 22(6):575-83. PMid: 1712155. https://doi. org/10.1111/j.1439-0272.1990.tb02058.x
Paulino CA, Palermo-Neto J. Effects of acute 2,4-dichlorophenoxyacetic acid intoxication on some rat serum components and enzyme activities. Braz J Med Biol Res. 1991; 24(2):195-8. PMid: 1726651.
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res. 2011; 52(12):2111-35. PMid: 21976778 PMCid: PMC3283258. https://doi.org/10.1194/jlr.r016675
Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta. 2009; 1791(7):646-58. PMid: 19286473 PMCid: PMC2757135. https://doi.org/10.1016/j. bbalip.2009.03.001
Uren Webster TM, Perry MH, Santos EM. The herbicide linuron inhibits cholesterol biosynthesis and induces cellular stress responses in brown trout. Environ Sci Technol. 2015; 49(5):3110-8. PMid: 25633873. https:// doi.org/10.1021/es505498u
Kelley RI, Hennekam RC. The Smith-Lemli-Opitz syndrome. J Med Genet. 2000; 37(5):321-35. PMid: 10807690 PMCid: PMC1734573. https://doi.org/10.1136/ jmg.37.5.321
Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004; 25(6):947-70. PMid: 15583024. https://doi.org/10.1210/er.2003-0030
Flück CE, Pandey AV. Steroidogenesis of the testis -- new genes and pathways. Ann Endocrinol (Paris). 2014; 75(2):40-7. PMid: 24793988. https://doi.org/10.1016/j. ando.2014.03.002
Dantas TA, Cancian G, Neodini DN, Mano DR, Capucho C, Predes FS, et al. Leydig cell number and sperm production decrease induced by chronic ametryn exposure: A negative impact on animal reproductive health. Environ Sci Pollut Res Int. 2015; 22(11):8526-35. PMid: 2556125. https://doi.org/10.1007/s11356-014-4010-5
Dutta HM, Meijer HJ. Sublethal effects of diazinon on the structure of the testis of bluegill, Lepomis macrochirus: a microscopic analysis. Environ Pollut. 2003; 125(3):355-60. PMid: 12826413. https://doi.org/10.1016/ s0269-7491(03)00123-4
Rato L, Alves MG, Socorro S, Cavaco JE, Oliveira PF. Blood testis barrier: how does the seminiferous epithelium feed the developing germ cells. Endothelium and Epithelium: Composition, Functions and Pathology. 2011:137-55.
Ray SD, Lam TS, Rotollo JA, Phadke S, Patel C, Dontabhaktuni A, et al. Oxidative stress is the master operator of drug and chemically-induced programmed and unprogrammed cell death: Implications of natural antioxidants in vivo. Biofactors. 2004; 21(1- 4):223-32. PMid: 15630201. https://doi.org/10.1002/ biof.552210144
Aydin H, Ozdemir N, Uzunören N. Investigation of the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) in rat kidneys. Forensic Sci Int. 2005; 153(1):53-7. PMid: 15935583. https://doi.org/10.1016/j. forsciint.2005.04.018
Kim CS, Keizer RF, Pritchard JB. 2,4-Dichlorophenoxyacetic acid intoxication increases its accumulation within the brain. Brain Res. 1988; 440(2):216-26. PMid: 3359212. https://doi. org/10.1016/0006-8993(88)90989-4
Tichati L, Trea F, Ouali K. Potential Role of Selenium Against Hepatotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid in Albino Wistar Rats. Biol Trace Elem Res. 2020; 194(1):228-36. PMid: 31190189. https://doi.org/10.1007/s12011-019-01773-9
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge L, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells. 2019; 8(7):681. PMid: 31284489 PMCid: PMC6678868. https://doi.org/10.3390/ cells8070681
Suzen S. Melatonin and synthetic analogs as antioxidants. Curr Drug Deliv. 2013; 10(1):71-5. PMid: 22998047. https://doi.org/10.2174/1567201811310010013
Kaur N, Sharma M, Lonare MK, Udehiya R, Singh D. Bio-antioxidants protect the buffalo bone marrow derived mesenchymal stem cells against oxidative stress induced during freeze-thaw cycle. Toxicol Int. 2021; 28(1):17-30. http://informaticsjournals.in/index.php/ toxi/article/view/24809
Xu D, Liu L, Zhao Y, Yang L, Cheng J, Hua R, et al. Melatonin protects mouse testes from palmitic acidinduced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. J Pineal Res. 2020; 69(4):e12690. PMid: 32761924. https://doi. org/10.1111/jpi.12690
Choi Y, Attwood SJ, Hoopes MI, Drolle E, Karttunen M, Leonenko Z. Melatonin directly interacts with cholesterol and alleviates cholesterol effects in dipalmitoylphosphatidylcholine monolayers. Soft Matter. 2014; 10(1):206-13. PMid: 24651707. https://doi.org/10.1039/ c3sm52064a
Li C, Zhou X. Melatonin and male reproduction. Clin Chim Acta. 2015; 446:175-80. PMid: 25916694. https:// doi.org/10.1016/j.cca.2015.04.029
Srivastava RK, Krishna A. Melatonin affects steroidogenesis and delayed ovulation during winter in vespertilionid bat, Scotophilus heathi. J Steroid Biochem Mol Biol. 2010; 118(1-2):107-16. PMid: 19897034. https://doi.org/10.1016/j.jsbmb.2009.11.001
Yang WC, Tang KQ, Fu CZ, Riaz H, Zhang Q, Zan LS. Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2. Anim Reprod Sci. 2014; 147(1-2):10-6. PMid: 24768045. https://doi.org/10.1016/j.anireprosci.2014.03.017
Cipolla-Neto J, Amaral FG, Soares Jr JM, Gallo CC, Furtado A, Cavaco JE, et al. The crosstalk between melatonin and sex steroid hormones. Neuroendocrinology. 2021:1-15. PMid: 33774638. https://doi. org/10.1159/000516148
Al Kury LT, Zeb A, Abidin ZU, Irshad N, Malik I, Alvi AM, et al. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Devel Ther. 2019; 13:2715-27. PMid: 31447548 PMCid: PMC6683968. https://doi.org/10.2147/dddt. s207310