Protective Effects of Melatonin Against 2,4-Dichlorophenoxyacetic Acid Induced Altered Haematological Variables in Mice: An In Vivo and In Silico Approach
DOI:
https://doi.org/10.18311/ti/2022/v29i2/29288Keywords:
2, 4-Dichlorophenoxyacetic Acid, Haematotoxicity, Melatonin, Mice, ProtectionAbstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a systemic phenoxy herbicide that induces oxidative stress. In contrast, melatonin is a secretory product of the pineal gland with antioxidant properties. In the present study, the ameliorative potential of melatonin (10 mg/kg body weight) was investigated against 2,4-D (low, mid, and high dose-16.5, 33.0, and 66.0 mg/kg body weight) induced altered haematological variables using in vivo and in silico models. Doses of 2,4-D and melatonin were administered orally for 28 days. The evaluated haematological indices in the present study were Haemoglobin (Hb), Red Blood Corpuscles (RBC), Haematocrit (HCT), Mean Corpuscular Volume (MCV), Mean Corpuscular Haemoglobin (MCH), Mean Corpuscular Haemoglobin Concentration (MCHC), White Blood Corpuscles (WBC), Lymphocytes, Monocytes, Granulocytes, Platelet Count (PT), Mean Platelet Volume (MPV), Plateletcrit (PCT), and Erythrocyte Sedimentation Rate (ESR). The statistical significant value was considered at p<0.05. Molecular docking study was performed for interaction of 2,4-D and melatonin with haemoglobin. In vivo results revealed that 2,4-D treatment showed a significant dose-dependent alteration in above all studied haematological indices. No significant auto reversal effects were observed in the withdrawal study, on the contrarily, the altered haematological indices were normalized and comparable to control when melatonin was given alone and in combination with 2,4-D. In silico results also demonstrated that 2,4-D and melatonin showed competitive bindings with haemoglobin. In nutshell, these in vivo and in silico findings depicted those haematological indices were altered by 2,4-D toxicity and can be abridged by melatonin attributed to its ameliorative potential as also evidenced by molecular docking.Downloads
Published
How to Cite
Issue
Section
Accepted 2022-02-21
Published 2022-07-15
References
Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GP, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019; 1(11):1446. https://doi.org/10.1007/s42452-019-1485-1
Atwood D, Paisley-Jones C. Pesticides industry sales and usage: 2008-2012 market estimates. U.S. Environmental Protection Agency (EPA). Washington, DC; 2017. https://www.epa.gov/sites/production/files/2017-01/ documents/pesticides-industry-sales-usage-2016_0.pdf
Zuanazzi NR, de Castilhos Ghisi N, Oliveira EC. Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: a scientometric review. Chemosphere. 2020; 241:125016. PMid: 31683446. https://doi.org/10.1016/j. chemosphere.2019.125016
Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL. Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ Sci Pollut Res Int. 2020; 27(31):38501-12. PMid: 32770339. https://doi. org/10.1007/s11356-020-10370-6
Health Canada. 2,4-D in Drinking Water - For Public Consultation. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document; 2020. https://www.canada.ca/content/dam/hc-sc/documents/ programs/consultation-review-guideline-technicaldocument- 2-4-d-drinking-water/2-4-D-GTDConsultation- 20200727-eng.pdf
Health Canada. Residue limits for pesticides database: 2,4-D. Health Canada, Consumer Product Safety, Pesticides and Pest Management. 2018. https://pr-rp. hc-sc.gc.ca/mrl-lrm/index-eng.php
Islam F, Wang J, Farooq MA, Khan MS, Xu L, Zhu J, et al. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int. 2018; 111:332-51. PMid: 29203058. https://doi.org/10.1016/j. envint.2017.10.020
Bojarski B, Witeska M. Blood biomarkers of herbicide, insecticide, and fungicide toxicity to fish-a review. Environ Sci Pollut Res Int. 2020; 27(16):19236-50. PMid: 32248419. https://doi.org/10.1007/s11356-020-08248-8
Bukowska B, Reszka E, Duda W. Influence of phenoxyherbicides and their metabolites on the form of oxy- and deoxyhemoglobin of vertebrates. Biochem Mol Biol Int. 1998; 45(1):47-59. PMid: 9635129. https://doi. org/10.1080/15216549800202422
Ateeq B, Abul farah M, Niamat Ali M, Ahmad W. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat Res. 2002; 518(2):135-44. PMid: 12113764. https://doi.org/10.1016/ S1383-5718(02)00075-X
Bukowska B. Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol C Toxicol Pharmacol. 2003; 135(4):435-41. PMid: 12965188. https://doi.org/10.1016/S1532- 0456(03)00151-0
Soloneski S, González NV, Reigosa MA, Larramendy ML. Herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-induced cytogenetic damage in human lymphocytes in vitro in presence of erythrocytes. Cell Biol Int. 2007; 31(11):1316-22. PMid: 17606385. https://doi. org/10.1016/j.cellbi.2007.05.003
Soni R, Gaherwal S, Shiv G. Effect of herbicide 2,4-D on hematological parameters of Clarias batrachus. Int J Curr Res Life Sci. 2018; 7(7):2441-4. http://journalijcrls. com/sites/default/files/issues-pdf/01448.pdf
Kubrak OI, Atamaniuk TM, Storey KB, Lushchak VI. Goldfish can recover after short-term exposure to 2,4-dichlorophenoxyacetate: use of blood parameters as vital biomarkers. Comp Biochem Physiol C Toxicol Pharmacol. 2013; 157(3):259-65. PMid: 23291397. https://doi.org/10.1016/j.cbpc.2012.12.005
Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013; 14(4):8638-83. PMid: 23609496 PMCid: PMC3645767. https://doi.org/10.3390/ijms14048638
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre?Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016; 61(3):253-78. PMid: 27500468. https://doi.org/10.1111/jpi.12360
Acuña-Castroviejo D, Escames G, Venegas C, Díaz- Casado ME, Lima-Cabello E, López LC, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014; 71(16):2997-3025. PMid: 24554058. https://doi.org/10.1007/s00018-014-1579-2
Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, et al. Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol. 2018; 175(16):3251-62. PMid: 28880375 PMCid: PMC6057911. https://doi. org/10.1111/bph.13966
Esteban M, Cuesta A, Chaves-Pozo E, Meseguer J. Influence of melatonin on the immune system of fish: a review. Int J Mol Sci. 2013; 14(4):7979-99. PMid: 23579958 PMCid: PMC3645727. https://doi. org/10.3390/ijms14047979
Upadhyaya AM, Rao MV, Jhala DD. Ameliorative effects of melatonin against 2,4-dichlorophenoxyacetic acid toxicity in kidney of mice- A histological study. Asian J Pharm Clin Res. 2018; 11(1):78-82. https://doi. org/10.22159/ajpcr.2018.v11i1.21829
Upadhyaya AM, Rao MV, Jhala DD. Melatonin attenuates 2,4-dichlorophenoxyacetic acid toxicity in kidney of mice. Toxicol Int. 2019; 25(2):130-8. http://www.informaticsjournals. in/index.php/toxi/article/view/23566
Indian National Science Academy (INSA). Guidelines for care and use of animals in scientific research. New Delhi, India; 2000.
Amer SM, Aly FA. Genotoxic effect of 2,4-dichlorophenoxy acetic acid and its metabolite 2, 4-dichlorophenol in mouse. Mutat Res. 2001; 494(1-2):1-12. PMid: 11423340. https://doi.org/10.1016/S1383-5718(01)00146-2
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-61. PMid: 19499576 PMCid: PMC3041641. https://doi.org/10.1002/jcc.21334
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021; 49(D1):D1388-95. PMid: 33151290 PMCid: PMC7778930. https://doi. org/10.1093/nar/gkaa971
Fermi G, Perutz MF, Shaanan B, Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 Šresolution. J Mol Biol. 1984; 175(2):159-74. PMid: 6726807. https://doi.org/10.1016/0022-2836(84)90472-8
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000; 28(1):235-42. PMid: 10592235 PMCid: PMC102472. https://doi.org/10.1093/nar/28.1.235
BIOVIA, Dassault Systèmes, (BIOVIA Discovery Studio), v.16.1.0.15350, San Diego: Dassault Systèmes, 2016.
Akinrotimi OA, Abu OM, Bekibele DO, Udeme-Naa B, Aranyo AA. Haematological characteristics of Tilapia guineensis from Buguma Creek, Niger Delta, Nigeria. Elec J Env Agricult Food Chem. 2010; 9(8): 1415-22.
Michael PO. Toxicity effect of atrazine on histology, haematology and biochemical indices of Clarias gariepinus. Int J Fish Aquat Stud. 2018; 6(3):87-92. https://www. fisheriesjournal.com/archives/2018/vol6issue3/PartB/6- 2-23-695.pdf
Safahieh A, Jaddi Y, Yavari V, Zadeh RS. Sub-lethal effects of herbicide paraquat on hematological parameters of benny fish Mesopotamichthys sharpeyi. Int Proc Chem Biol Environ Eng. 2012; 42:141-5. http://www. ipcbee.com/vol42/027-ICBEM2012-C30003.pdf
Galal AAA, Reda RM, Abdel-Rahman Mohamed A. Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. Fish Shellfish Immunol. 2018; 77:445-56. PMid: 29626668. https://doi.org/10.1016/j.fsi.2018.04.011
Abubakar YA, Iheanacho S, Ogueji E. Sublethal exposure and toxicity effect of propanil on hematology and serum biochemistry in Oreochromis niloticus in a static bioassay. Gazi Univ J Sci. 2018; 31(4):1048-62. https:// dergipark.org.tr/en/download/article-file/584941
Vani T, Saharan N, Mukherjee SC, Ranjan R, Kumar R, Brahmchari RK. Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C. Pestic Biochem Physiol. 2011; 101(1):16-20. https://doi.org/10.1016/j. pestbp.2011.05.007
Akinrotimi OA, Abu OM, Agokel EO, Uedeme-Naa B. Effects of direct transfer to fresh water on the haematological parameters of Tilapia guineensis Bleeker, 1862. Anim Res Int. 2010; 7(2):1199-1205. https://www.ajol. info/index.php/ari/article/view/79771
Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, et al. Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol. 2008; 38(9):721-72. PMid: 18941967. https:// doi.org/10.1080/10408440802116496
Finsterbusch M, Schrottmaier WC, Kral-Pointner JB, Salzmann M, Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018; 29(7):677- 85. PMid: 29461910 PMCid: PMC6178087. https://doi. org/10.1080/09537104.2018.1430358
Samanta P, Pal S, Mukherjee AK, Senapati T, Jung J, Ghosh AR. Assessment of adverse impacts of glyphosatebased herbicide, excel mera 71 by integrating multi-level biomarker responses in fishes. Int J Environ Sci Technol. 2019; 16(10):6291-6300. https://doi.org/10.1007/ s13762-018-2013-3
Tishkowski K, Gupta V. Erythrocyte Sedimentation Rate [Internet]. 2021. [Updated 2021 May 9]. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK557485/
Verma AK, Prakash S. Haematotoxicity of phorate, an organophosphorous pesticide on a freshwater fish, Channa punctatus (Bloch). Int J Agri Sci. 2018; 9(2):117- 20. https://philpapers.org/rec/VERHOP
Sreekala LK. Impact of pesticide endosulfan on haematological parameters of Etroplus suratensis. Int J Inv Sci Res Tech. 2018; 3(6):540-4. https://ijisrt.com/ impact-of-pesticide-endosulfan-on-haematologicalparameters- of-etroplus-suratensis
Aydin H, Ozdemir N, Uzunören N. Investigation of the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) in rat kidneys. Forensic Sci Int. 2005; 153(1):53-7. PMid: 15935583. https://doi.org/10.1016/j. forsciint.2005.04.018
Kim CS, Keizer RF, Pritchard JB. 2,4-dichlorophenoxyacetic acid intoxication increases its accumulation within the brain. Brain Res. 1988; 440(2):216-26. PMid: 3359212. https://doi.org/10.1016/0006-8993(88) 90989-4
Kaur N, Sharma M, Lonare MK, Udehiya R, Singh D. Bio-antioxidants protect the buffalo bone marrow derived mesenchymal stem cells against oxidative stress induced during freeze-thaw cycle. Toxicol Int. 2021; 28(1):17-30. http://informaticsjournals.in/index.php/ toxi/article/view/24809
Sönmez MF, Narin F, Akku? D, Türkmen AB. Melatonin and vitamin C ameliorate alcohol-induced oxidative stress and eNOS expression in rat kidney. Ren Fail. 2012; 34(4):480-6. PMid: 22260528. https://doi.org/10.3109/0 886022X.2011.649678
Watson RR, editor. Melatonin in the promotion of health. 2nd ed. Boca Raton, Florida, USA: CRC Press; 2011.
Reiter RJ, Tan DX, Kim SJ, Cruz MH. Delivery of pineal melatonin to the brain and SCN: Role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct Funct. 2014; 219(6):1873-87. PMid: 24553808. https://doi.org/10.1007/s00429-014- 0719-7
Tanaka T, Yasui Y, Tanaka M, Tanaka T, Oyama T, Rahman KW. Melatonin suppresses AOM/DSS-induced large bowel oncogenesis in rats. Chem Biol Interact. 2009; 177(2):128-36. PMid: 19028472. https://doi. org/10.1016/j.cbi.2008.10.047
Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: Evaluation of human trials. Curr Med Chem. 2010; 17(19):2070-95. PMid: 20423309. https://doi.org/10.2174/092986710791233689
Banerjee A, Chattopadhyay A, Pal PK, Bandyopadhyay D. Melatonin is a potential therapeutic molecule for oxidative stress induced red blood cell (RBC) injury: A review. Melatonin Res. 2020; 3(1):1-31. https://doi. org/10.32794/mr11250045
Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow?Walden L, et al. Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res. 1995; 19(3):111-5. PMid: 8750343. https://doi.org/10.1111/ j.1600-079X.1995.tb00178.x
Rosengarten H, Meller E, Friedhoff AJ. In vitro enzymatic formation of melatonin by human erythrocytes. Res Commun Chem Pathol Pharmacol. 1972; 4(2):457- 65. PMid: 5074537.
Tesoriere L, D’Arpa D, Conti S, Giaccone V, Pintaudi AM, Livrea MA. Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity. J Pineal Res. 1999; 27(2):95-105. PMid: 10496145. https://doi.org/10.1111/ j.1600-079X.1999.tb00602.x
Paul S, Naaz S, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D. Melatonin chelates iron and binds directly with phenylhydrazine to provide protection against phenylhydrazine induced oxidative damage in red blood cells along with its antioxidant mechanisms: an in vitro study. Melatonin Res. 2018; 1(1):1-20. https:// doi.org/10.32794/mr11250001
Miller SC, Pandi PS, Esquifino AI, Cardinali DP, Maestroni GJ. The role of melatonin in immunoenhancement: potential application in cancer. Int J Exp Pathol. 2006; 87(2):81-7. PMid: 16623752 PMCid: PMC2517357. https://doi.org/10.1111/j.0959- 9673.2006.00474.x
Ye JY, Liang EY, Cheng YS, Chan GC, Ding Y, Meng F, et al. Serotonin enhances megakaryopoiesis and proplatelet formation via p?Erk1/2 and F?actin reorganization. Stem Cells. 2014; 32(11):2973-82. PMid: 24980849. https://doi.org/10.1002/stem.1777
Al Kury LT, Zeb A, Abidin ZU, Irshad N, Malik I, Alvi AM, et al. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Devel Ther. 2019; 13:2715-27. PMid: 31447548 PMCid: PMC6683968. https://doi.org/10.2147/DDDT. S207310