In Silico Evaluation of Bioactive Compounds from Gokshura (Tribulus terrestris L.) and Punarnava (Boerhavia diffusa L.) for their Nephroprotective Activity in Chronic Kidney Disease and Related Complications
DOI:
https://doi.org/10.18311/ti/2024/v31i2/35525Keywords:
Boerhavia diffusa, In-silico, Nephroprotective, Molecular Docking, Tribulus terrestrisAbstract
Kidney diseases are one of the leading causes of mortality worldwide. Diabetes and hypertension are the main causes of kidney failure resulting in 3 out of 4 new cases. Most of the conventional drugs used in various disease conditions are reported for their nephrotoxic actions and their continuous use can also damage the kidneys. Ayurveda recommends certain herbal drugs like Gokshura (Tribulus terrestris L.) and Punarnava (Boerhavia diffusa L.) which can control endstage kidney disease and its complications through the rejuvenation of the kidneys. The present study is an effort to show the nephroprotective potential of bioactive compounds present in Tribulus terrestris L. and Boerhavia diffusa L. against critical nephroprotective targets carbonic anhydrase II, renin, HIF propyl hydroxylase 2/ EGLN1, angiotensin-converting enzyme II, vasopressin receptor 2 against their respective standard drugs through in silico technique and to verify the probable efficacy of these herbs in chronic kidney disease against modern medication. Discovery Studio (DS Visualizer 2016) and Auto Dock tool (ADT Tools-1.5.6) were used for molecular docking. Among the major bioactive compounds screened, chlorogenin, hecogenin, diosgenin, neotigogenin and beta-sitosterol from Tribulus terrestris L., Beta-sitosterol, boerhavisterol, liriodenine, boerhadiffusene and ursolic acid from Boerhavia diffusa L. observed to exhibit significantly higher binding energy (BE) and inhibition constant (IC50) towards CA II, Renin, EGLN1, ACE II and V2R than their respective standard drugs. The study has demonstrated the nephroprotective activity of Tribulus terrestris L. and Boerhavia diffusa L. by inhibiting receptor activity against standard drug molecules.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anushri S. Urkude, Rabinarayan Acharya, Sharad D. Pawar, Bhupesh R. Patel, Qadir Alam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-03-03
Published 2024-04-08
References
Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segmentspecific transcriptomes. J Am Soc Nephrol. 2015; 26(11):2669-77. PMid: 25817355; PMcid: PMC4625681. https://doi.org/10.1681/ASN.2014111067 DOI: https://doi.org/10.1681/ASN.2014111067
Siew ED, Davenport A. The growth of acute kidney injury: A rising tide or just closer attention to detail? Kidney Int. 2015; 87(1):46-61. PMid: 25229340; PMcid: PMC4281297. https://doi.org/10.1038/ki.2014.293 DOI: https://doi.org/10.1038/ki.2014.293
Eswarappa M, Gireesh MS, Ravi V, Kumar D, Dev G. Spectrum of acute kidney injury in critically ill patients: A single center study from South India. Indian J Nephrol. 2014; 24(5):280-5. PMid: 25249716; PMcid: PMC4165051. https://doi.org/10.4103/0971-4065.132991 DOI: https://doi.org/10.4103/0971-4065.132991
Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J Nephrol Renovasc Dis. 2014; 7:457- 68. PMid: 25540591; PMcid: PMC4270362. https://doi. org/10.2147/IJNRD.S39747 DOI: https://doi.org/10.2147/IJNRD.S39747
Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010; 28(5):478-85. PMid: 20458318; PMcid: PMC2885849. https://doi.org/10.1038/nbt.1623 DOI: https://doi.org/10.1038/nbt.1623
Siddharth N, Shah MPA. Nephrology. In: Aspi R. Billimoria SAK, editors. Textbook of API Medicine, Volume 1, 8th ed. New Delhi: Jaypee Brothers Medical; 2009 p.732-3.
Yaraguppi DA, Udapudi BB, Patil LR, Hombalimath VS, Shet AR. In silico analysis for predicting protein ligand interaction for snake venom protein. Journal of Advanced Bioinformatics Applications and Research. 2012; 3(3): 345-56.
Lee HH, Ahn EK, Hong SS, Oh JS. Anti-inflammatory effect of tribulusamide D isolated from Tribulus terrestris in lipopolysaccharide-stimulated RAW264.7 macrophages. Mol Med Rep. 2017; 16(4):4421-8. PMid: 28849109; PMcid: PMC5647001. https://doi.org/10.3892/mmr.2017.7208 DOI: https://doi.org/10.3892/mmr.2017.7208
Hammoda HM, Ghazy NM, Harraz FM, Radwan MM, ElSohly MA, Abdallah II. Chemical constituents from Tribulus terrestris and screening of their antioxidantactivity. Phytochemistry. 2013; 92:153-9. PMid: 23642392. https://doi.org/10.1016/j.phytochem.2013.04.005 DOI: https://doi.org/10.1016/j.phytochem.2013.04.005
Kaushik J, Tandon S, Gupta V, Nayyar J, Singla SK, Tandon C. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes. PloS One. 2017; 12(8). PMid: 28846699; PMcid: PMC5573133. https://doi.org/10.1371/journal.pone.0183218 DOI: https://doi.org/10.1371/journal.pone.0183218
Mudgal V. Studies on medicinal properties of Convolvulus pluricaulis and Boerhaavia diffusa. Planta Med. 1975; 28(1):62-8. PMid: 1178789. https://doi. org/10.1055/s-0028-1097830 DOI: https://doi.org/10.1055/s-0028-1097830
Hiruma-Lima CA, Gracioso JS, Bighetti EJ, Robineou LG, Brito ARS. The juice of fresh leaves of Boerhavia diffusa L. (Nyctaginaceae) markedly reduces pain in mice. J of Ethnopharmacol. 2000; 71(1-2):267-74. PMid: 10904173. https://doi.org/10.1016/s0378-8741(00)00178-1 DOI: https://doi.org/10.1016/S0378-8741(00)00178-1
Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. Biomed Res Int. 2014; 2014. PMid: 24949473; PMcid: PMC4053255. https://doi.org/10.1155/2014/808302
Mungantiwar AA, Nair AM, Kamal KK, Saraf MN. Adaptogenic activity of aqueous extract of the roots of Boerhaavia diffusa Linn. Indian Drugs. 1997; 34(4):184-9
Rawat AK, Mehrotra S, Tripathi SC, Shome U. Hepatoprotective activity of Boerhaavia diffusa L. roots - A popular Indian ethnomedicine. J Ethnopharmacol. 1997; 56(1):61-6. PMid: 9147255. https://doi.org/10.1016/s0378-8741(96)01507-3 DOI: https://doi.org/10.1016/S0378-8741(96)01507-3
Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res Int. 2014. PMid: 24949473; PMcid: PMC4053255. https://doi.org/10.1155/2014/808302
Bhavamishra KC. Chunekar. Bhavaprakash Nighantu. Pandey GS, editor. Guduchyadi Varga, Varanasi: Chaukhamba Bharati Academy; 2013. p. 279.
Bhavamishra KC. Chunekar. Bhavaprakash Nighantu. Pandey GS, editor. Guduchyadi Varga, Varanasi: Chaukhamba Bharati Academy; 2013. p. 406.
Sastry JLN, Illustrated Dravyaguna Vijyana, Vol.-2, Chaukhambha Orientalia, Varanasi, India. 2010. p. 100.
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Novel gastroprotective and thermostable cocrystal of dimethyl fumarate: Its preparation, characterization, and in vitro and in vivo evaluation. ACS Omega. 2023. https://doi. org/10.1021/acsomega.3c02463 DOI: https://doi.org/10.1021/acsomega.3c02463
IMPPAT: Indian Medicinal Plants, Phytochemistry And Therapeutics. By Anon cb.imsc.res.in. https://cb.imsc. res.in/imppat/phytochemical/Boerhavia%20diffusa and https://cb.imsc.res.in/imppat/phytochemical/Tribulus%20 terrestris (last accessed on. 3.2.2024)
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Preparation, characterization, in-vitro and in-vivo pharmacokinetic evaluation of thermostable dimethyl fumarate cocrystals. J Pharm Sci. 2024; 113(3):647-58. PMid: 37595751. https://doi.org/10.1016/j.xphs.2023.07.001 DOI: https://doi.org/10.1016/j.xphs.2023.07.001
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J of Comput Chem. 2009; 30(16):2785-91. PMid: 19399780; PMcid: PMC2760638. https://doi.org/10.1002/jcc.21256 DOI: https://doi.org/10.1002/jcc.21256
Shlipak MG, Tummalapalli SL, Boulware LE, Grams ME, Ix JH, Jha V, et al. The case for early identification and intervention of chronic kidney disease: Conclusions from a kidney disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2021; 99(1):34-47. PMid: 33127436. https://doi.org/10.1016/j.kint.2020.10.012 DOI: https://doi.org/10.1016/j.kint.2020.10.012
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting plant-based therapies for chronic kidney disease. J Evid Based Integr Med. 2022; 27. PMid: 35243916; PMcid: PMC8902019. https://doi. org/10.1177/2515690X221079688 DOI: https://doi.org/10.1177/2515690X221079688
Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res Int. 2014. PMid: 24949473; PMcid: PMC4053255. https://doi.org/10.1155/2014/808302
Yadav HN, Sharma US, Singh S, Gupta YK. Effect of Tribulus terrestris in mercuric chloride-induced renal accumulation of mercury and nephrotoxicity in rat. J Adv Pharm Techno Res. 2019; 10(3):132-7. PMid: 31334096; PMcid: PMC6621347. https://doi.org/10.4103/japtr.JAPTR_386_18 DOI: https://doi.org/10.4103/japtr.JAPTR_386_18
Jiang YH, Yang CH, Li W, Wu S, Meng XQ, Li DN. Aqueous extracts of Tribulus terrestris protects against oxidized lowdensity lipoprotein-induced endothelial dysfunction. Chin J Integr Med. 2016; 22:193-200. https://doi.org/10.1007/ s11655-015-2321-0 DOI: https://doi.org/10.1007/s11655-015-2321-0
Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Res Int. 2014. PMid: 24949473; PMcid: PMC4053255. https://doi.org/10.1155/2014/808302 DOI: https://doi.org/10.1155/2014/808302
Hemalatha S, Hari R. Acute and subacute toxicity studies of the saponin rich butanol extracts of Tribulus terrestris fruits in wistar rats. Int J Pharm Sci Rev Res. 2014; 27. 307-13.
Orish E, Orisakwe O, Johnson O, Adaora M, Obi E, Dioka C. Sub-chronic toxicity studies of the aqueous extract of Boerhavia diffusa Leaves. J Health Sci. 2003; 49. 444-7. https://doi.org/10.1248/jhs.49.444 DOI: https://doi.org/10.1248/jhs.49.444
Mishra P, Mandlik D, Arulmozhi S, Mahadik K. Nephroprotective role of diosgenin in gentamicin-induced renal toxicity: Biochemical, antioxidant, immunological and histopathological approach. Futur J Pharm Sci. 2021; 7:169. https://doi.org/10.1186/s43094-021-00318-z DOI: https://doi.org/10.1186/s43094-021-00318-z
Ul Haq I, Khan T, Ahmad T, Shah AJ. Insight into the cardiovascular mechanisms of blood pressure lowering effect of gitogenin: A steroidal saponin. Clin Exp Hypertens. 2021; 43(8):723-9. PMid: 34396877. https://doi.org/10.1080 /10641963.2021.1950748 DOI: https://doi.org/10.1080/10641963.2021.1950748
Ku M, Bazargan A, Tam C. Addition of low dose acetazolamide as an adjunct in patients undergoing high dose methotrexate is safe and beneficial. Intern Med J. 2020; 50(3), 357-62. PMid: 31403755. https://doi.org/10.1111/imj.14468 DOI: https://doi.org/10.1111/imj.14468
Cheng CM, Salazar A, Amato MG, Lambert BL, Volk LA, Schiff GD. Using drug knowledge base information to distinguish between look-alike-sound-alike drugs. J Am Med Inform Assoc. 2018; 2(7):872-84. PMid: 29800453; PMcid: PMC7647046. https://doi.org/10.1093/jamia/ ocy043 DOI: https://doi.org/10.1093/jamia/ocy043
Morishita Y, Kusano E. Direct Renin inhibitor: Aliskiren in chronic kidney disease. Nephro-Urol Mon. 2013; 5(1):668- 72. PMid: 23577328; PMcid: PMC3614331. https://doi. org/10.5812/numonthly.3679 DOI: https://doi.org/10.5812/numonthly.3679
Fountain JH, Kaur J, Lappin SL. Physiology, renin angiotensin system. In StatPearls. StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK470410/.
Liu J, Yang F, Waheed Y, Li S, Liu K, Zhou X. The role of roxadustat in chronic kidney disease patients complicated with anemia. Korean J Intern Med. 2023; 38(2):147- 56. PMid: 36588451; PMcid: PMC9993099. https://doi. org/10.3904/kjim.2022.318 DOI: https://doi.org/10.3904/kjim.2022.318
Gan Z, Huang D, Jiang J, Li Y, Li H, Ke Y. Captopril alleviates hypertension-induced renal damage, inflammation, and NF-κB activation. Braz J Med Biol Res. 2018; 51(11). PMid: 30183974; PMcid: PMC6125835. https://doi. org/10.1590/1414-431X20187338 DOI: https://doi.org/10.1590/1414-431x20187338
Sans-Atxer L, Joly D. Tolvaptan in the treatment of autosomal dominant polycystic kidney disease: Patient selection and special considerations. Int J Nephrol Renovasc Dis. 2018; 11:41-51. PMid: 29430193; PMcid: PMC5797468. https:// doi.org/10.2147/IJNRD.S125942 DOI: https://doi.org/10.2147/IJNRD.S125942