Experimental Investigation of Welding Parameters On Mild Steel Using Metal Active Gas Welding
DOI:
https://doi.org/10.18311/jmmf/2023/36094Keywords:
Manufacturing, Metal Active Gas, Shielded Welding, Welding CurrentAbstract
Gas shielded welding is a widely applied fabrication processes in manufacturing industry. The present study will elucidate on an investigative approach to find the mechanical properties, influenced by several input parameters like welding current, voltage and wire spool speed in the Metal Active Gas Welding (MAG) of Mild Steel. Taguchi’s L9 orthogonal array has been employed to analyse the process parameters. The levels of consequences of input parameters were investigated by applying analysis of variance (ANOVA). The microstructural orientations and mechanical properties of weld specimen are explored in this work. Welding current is an influential parameter to control tensile strength followed by welding voltage and federate of electrode. Furthermore, hardness of weld material has a greater effect of voltage including wire speed and current.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ramarao M, King MF, Sivakumar A, Manikandan V, Vijayakumar M, Subbiah R. Optimizing GMAW parameters to achieve high impact strength of the dissimilar weld joints using Taguchi approach. Materials Today: Proceedings. 2022 Jan 1; 50:861-6. DOI: https://doi.org/10.1016/j.matpr.2021.06.137
Radhakrishnan K, Parameswaran P, Antony AG, Rajaguru K. Optimization of mechanical properties on GMAW process framework using AA6061-T6. Materials Today: Proceedings. 2021 Jan 1; 37:2924-9. DOI: https://doi.org/10.1016/j.matpr.2020.08.684
Juang SC, Tarng YS. Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. Journal of Materials Processing Technology. 2002 Mar 5; 122(1):33-7.
Subravel V, Padmanaban G, Balasubramanian V. Effect of welding speed on microstructural characteristics and tensile properties of GTA welded AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China. 2014 Sep 1; 24(9):2776-84.
Subravel V, Padmanaban G, Balasubramanian V. Effect of welding speed on microstructural characteristics and tensile properties of GTA welded AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China. 2014 Sep 1; 24(9):2776-84. DOI: https://doi.org/10.1016/S1003-6326(14)63409-9
Jogi BF, Awale AS, Nirantar SR, Bhusare HS. Metal inert gas (MIG) welding process optimization using teaching-learning based optimization (TLBO) algorithm. Materials today: proceedings. 2018 Jan 1; 5(2):7086-95. DOI: https://doi.org/10.1016/j.matpr.2017.11.373
Kumar S, Shahi AS. Effect of heat input on the micro- structure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Materials & Design. 2011 Jun 1; 32(6):3617-23. DOI: https://doi.org/10.1016/j.matdes.2011.02.017
Chuaiphan W, Srijaroenpramong L. Effect of welding speed on microstructures, mechanical properties and corrosion behavior of GTA-welded AISI 201 stainless steel sheets. Journal of Materials Processing Technology. 2014 Feb 1; 214(2):402-8. DOI: https://doi.org/10.1016/j.jmatprotec.2013.09.025
Juang SC, Tarng YS. Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. Journal of Materials Processing Technology. 2002 Mar 5; 122(1):33-7. DOI: https://doi.org/10.1016/S0924-0136(02)00021-3
Ghosh N, Pal PK, Nandi G. Parametric optimization of MIG welding on 316L austenitic stainless steel by grey- based Taguchi method. Procedia Technology. 2016 Jan 1; 25:1038-48. DOI: https://doi.org/10.1016/j.protcy.2016.08.204
Ibrahim OA, Lignos DG, Rogers CA. Proposed modeling approach of welding procedures for heavy steel plates. Engineering Structures. 2016 Nov 15; 127:18-30. DOI: https://doi.org/10.1016/j.engstruct.2016.08.022
Rigelsford J. Modern Welding Technology 5/e. Assembly Automation. 2003 Sep 1; 23(3). DOI: https://doi.org/10.1108/aa.2003.03323cae.003