The Challenging Role of Flavonoids as a Potential Phytochemical to Treat Anxiety

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32406

Keywords:

Anxiety, Depression, Flavonoids, Medicinal Plants, Phytoconstituents, Traditional Medicine

Abstract

Numerous mental diseases can be caused by anxiety or anxiety-like effects, but phobia is a prevalent overcoming symptom that frequently causes stress. At present, two primary anxiety-treatment approaches are being considered: Psychotherapy and pharmacotherapy. So many traditional synthetic anxiolytic drugs with such a variety of side effects are used in the pharmacological clinical approach. As a result, scientists are searching for studies that will help them find suitable safe medications from plant sources. large experimental studies have assured that dietary phytoconstituents such as terpenoids, alkaloids, phenolic compounds, flavonoids, lignan, saponins, and cinnamates, and plant infusion comprising a combination of the various substance, have stronger action in a variety of the anxiety models in animals. The mechanisms of action of anxiolytics involve relationships with the GABA A receptor on both non-BZD sites and in Benzodiazepine (BZD).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Arbaz Khan, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh

 

 

Jatin Saini, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh

 

 

Downloads

Published

2023-06-13

How to Cite

Khan, A., Mazumder, A., & Saini, J. (2023). The Challenging Role of Flavonoids as a Potential Phytochemical to Treat Anxiety. Journal of Natural Remedies, 23(2), 383–396. https://doi.org/10.18311/jnr/2023/32406

Issue

Section

Short Review
Received 2023-01-13
Accepted 2023-04-24
Published 2023-06-13

 

References

Mathew SJ, Price RB, Charney DS. Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet. 2008; 148(2):89-98. https://doi.org/10.1002/ajmg.c.30172 DOI: https://doi.org/10.1002/ajmg.c.30172

Kaviani H, Mousavi AS. Psychometric properties of the Persian version of the beck anxiety inventory (BAI). TUMJ. 2008; 66(2):136-40.

Borkovec TD, Lyonfields JD. Worry: thought suppression of emotional processing. In: Krohome HW, editor. Attention and avoidance: strategies in coping with aversiveness. Seattle: Hogrefe and Huber Publishers; 1993. p. 101-8.

Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005; 48(2):175-87. https://doi.org/10.1016/j.neuron.2005.09.025 DOI: https://doi.org/10.1016/j.neuron.2005.09.025

Davis M. Neural systems involved in fear and anxiety measured with a fear-potentiated startle. Am Psychol. 2006; 61(8):741-56. https://doi.org/10.1037/0003-066X.61.8.741 DOI: https://doi.org/10.1037/0003-066X.61.8.741

Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage. 2002; 16(2):331-48. https://doi.org/10.1006/nimg.2002.1087 DOI: https://doi.org/10.1006/nimg.2002.1087

Quirk GJ, Garcia R, González-Lima F. Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry. 2006; 60(4):337-43. https://doi.org/10.1016/j.biopsych. 2006.03.010 DOI: https://doi.org/10.1016/j.biopsych.2006.03.010

Rauch SL, Savage CR, Alpert NM, Fischman AJ, Jenike MA. The functional neuroanatomy of anxiety: A study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry. 1997; 42(6):446-52. https://doi.org/10.1016/S0006-3223(97)00145-5 DOI: https://doi.org/10.1016/S0006-3223(97)00145-5

Malan-Müller S, Hemmings SMJ, Seedat S. Big effects of small RNAs: A review of microRNAs in anxiety. Mol Neurobiol. 2013; 47(2):726-39. https://doi.org/10.1007/s12035-012-8374-6 DOI: https://doi.org/10.1007/s12035-012-8374-6

Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci. 2004; 5(7):545-52. https://doi.org/10.1038/ nrn1429 DOI: https://doi.org/10.1038/nrn1429

Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017; 19(2):93-107. https://doi.org/10.31887/DCNS.2017.19.2/bbandelow DOI: https://doi.org/10.31887/DCNS.2017.19.2/bbandelow

Stahl MM, Lindquist M, Pettersson M, Edwards IR, Sanderson JH, Taylor NF, et al. Withdrawal reactions with selective serotonin re-uptake inhibitors as reported to the WHO system. Eur J Clin Pharmacol. 1997; 53(3-4):163-9. https://doi.org/10.1007/s002280050357 DOI: https://doi.org/10.1007/s002280050357

Baldwin DS, Ajel K, Masdrakis VG, Nowak M, Rafiq R. Pregabalin for the treatment of generalized anxiety disorder: An update. Neuropsychiatr Dis Treat. 2013; 9:883-92. https://doi.org/10.2147/NDT.S36453 DOI: https://doi.org/10.2147/NDT.S36453

Thanacoody HK, Thomas SH. Tricyclic antidepressant poisoning: cardiovascular toxicity. Toxicol Rev. 2005; 24(3): 205-14. https://doi.org/10.2165/00139709-200524030-00013 DOI: https://doi.org/10.2165/00139709-200524030-00013

Schweizer E, Rickels K, De Martinis N, Case G, García- España F. The effect of personality on withdrawal severity and taper outcome in benzodiazepine dependent patients. Psychol Med. 1998; 28(3):713-20. https://doi.org/10.1017/S0033291798006540 DOI: https://doi.org/10.1017/S0033291798006540

Berney P, Halperin D, Tango R, Daeniker-Dayer I, Schulz P. A major change of prescribing pattern in absence of adequate evidence: benzodiazepines versus newer antidepressants in anxiety disorders. Psychopharmacol Bull. 2008; 41(3):39-47.

Stein DJ, Ahokas A, Jarema M, Avedisova AS, Vavrusova L, Chaban O, et al. Efficacy and safety of agomelatine (10 or 25 mg/day) in non-depressed out-patients with generalized anxiety disorder: A 12-week, double-blind, placebo-controlled study. Eur Neuropsychopharmacol. 2017; 27(5):526-37. https://doi.org/10.1016/j.euroneuro.2017.02.007 DOI: https://doi.org/10.1016/j.euroneuro.2017.02.007

McAllister-Williams RH, Baldwin DS, Haddad PM, Bazire S. The use of antidepressants in clinical practice: focus on agomelatine. Hum Psychopharmacol. 2010; 25(2):95-102. https://doi.org/10.1002/hup.1094 DOI: https://doi.org/10.1002/hup.1094

Khan A, Joyce M, Atkinson S, Eggens I, Baldytcheva I, Eriksson H. A randomized, double-blind study of oncedaily extended-release quetiapine fumarate (quetiapine XR) monotherapy in patients with generalized anxiety disorder. J Clin Psychopharmacol. 2011; 31(4):418-28. https://doi.org/10.1097/JCP.0b013e318224864d DOI: https://doi.org/10.1097/JCP.0b013e318224864d

Woelk H, Schläfke S. A multi-center, double-blind, randomised study of the lavender oil preparation Silexan in comparison to lorazepam for generalized anxiety disorder. Phytomedicine. 2010; 17(2):94-9. https://doi.org/10.1016/j.phymed.2009.10.006 DOI: https://doi.org/10.1016/j.phymed.2009.10.006

Sarris J, Stough C, Bousman CA, Wahid ZT, Murray G, Teschke R, et al. Kava in the treatment of generalized anxiety disorder: A double-blind, randomized, placebo-controlled study. J Clin Psychopharmacol. 2013; 33(5):643-8. https://doi.org/10.1097/JCP.0b013e318291be67

Andreatini R, Sartori VA, Seabra ML, Leite JR. Effect of valepotriates (valerian extract) in generalized anxiety disorder: A randomized placebo-controlled pilot study. Phytother Res. 2002; 16(7):650-4. https://doi.org/10.1002/ptr.1027 DOI: https://doi.org/10.1002/ptr.1027

Wurglics M, Westerhoff K, Kaunzinger A, Wilke A, Baumeister A, Dressman J, et al. Comparison of German St. John’s wort products according to hyperforin and total hypericin content. J Am Pharm Assoc (Wash). 2001; 41(4):560-6. https://doi.org/10.1016/S1086-5802(16)31280-3 DOI: https://doi.org/10.1016/S1086-5802(16)31280-3

Singh J. Indian gooseberry. Ayur. Times Book Company; 2015.

Singh J. Rauwolfia serpentine-Indian snakeroot. Ayur. Times Book Company. 2016.

Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant like effect of the extract of Rosmarinus officinalis in mice; involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(4):642-50. https://doi.org/10.1016/j.pnpbp.2009.03.004 DOI: https://doi.org/10.1016/j.pnpbp.2009.03.004

Habtemariam S. The therapeutic Potential of Rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med. 2016; 2016:2680409. https://doi.org/10.1155/2016/2680409 DOI: https://doi.org/10.1155/2016/2680409

Calabrese C. Effects of Standardised Bacopa monnieri extract on Cognitive permormance, Anxiety and Depression in the Elderly. J Altern Complement Med. 2008; 14(6):707-13. https://doi.org/10.1089/acm.2008.0018 DOI: https://doi.org/10.1089/acm.2008.0018

Singh J. Amla Indian gooseberry. Pl. Gallery Press med; 2015

Guerrera PM, et al. Antimycotic activity of essential oil of Lippia citriodora Kunt (Aloysia triphylla Britton). Riv It EPPOS. 1995; 15:23-5.

Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, de Lourdes Basto M. Studies on the antioxidant activity of Lippia citriodora infusion: Scavenging effect on superoxide radical, hydroxyl radical and hypochlorous acid. Biol Pharm Bull. 2002; 25(10):1324-7. https://doi.org/10.1248/bpb.25.1324 DOI: https://doi.org/10.1248/bpb.25.1324

Qnais E, et al. Antinociceptive effect of two flavonoids from Aloysia triphylla L. Jordan J Biol Sci. 2009; 2(4):167-70.

Abu Zarga MA, Qauasmeh R, Sabri S, Munsoor M, Abdalla S. Chemical constituents of Artemisia arborescens and the effect of the aqueous extract on rat isolated smooth muscle. Planta Med. 1995; 61(3):242-5. https://doi.org/10.1055/s-2006-958064 DOI: https://doi.org/10.1055/s-2006-958064

Lu Y, Zhang C, Bucheli P, Wei D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum Nutr. 2006; 61(2):57-65. https://doi.org/10.1007/s11130-006-0014-8 DOI: https://doi.org/10.1007/s11130-006-0014-8

Emim JA, Oliveira AB, Lapa AJ. Pharmacological evaluation of the anti‐inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, Duartin and Claussequinone, in rats and mice. J Pharm Pharmacol. 1994; 46(2):118-22. https://doi.org/10.1111/j.2042-7158.1994.tb03753.x DOI: https://doi.org/10.1111/j.2042-7158.1994.tb03753.x

Agra MdF, Silva KN, Basílio IJLD, Freitas PFd, Barbosa-Filho JM. Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras Farmacognosia. 2008; 18(3):472-508. https://doi.org/10.1590/S0102-695X2008000300023 DOI: https://doi.org/10.1590/S0102-695X2008000300023

Rétiveau AN, Iv EC, Milliken GA. Common and specific effects of fine fragrances on the mood of women. J Sens Stud. 2004; 19(5):373-94. https://doi.org/10.1111/j.1745- 459x.2004.102803.x DOI: https://doi.org/10.1111/j.1745-459x.2004.102803.x

Moulehi I, Bourgou S, Ourghemmi I, Tounsi MS. Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Ind Crops Prod. 2012; 39:74-80. https://doi.org/10.1016/j.indcrop.2012.02.013 DOI: https://doi.org/10.1016/j.indcrop.2012.02.013

Hwang JH. The effects of the inhalation method using essential oils on blood pressure and stress responses of clients with essential hypertension. Taehan Kanho Hakhoe Chi. 2006; 36(7):1123-34. https://doi.org/10.4040/jkan.2006.36.7.1123 DOI: https://doi.org/10.4040/jkan.2006.36.7.1123

Gumnick JF, Nemeroff CB. Problems with currently available antidepressants. J Clin Psychiatry. 2000; 61(10):5-15.

Hooper, David, Henry Field. Useful plants and drugs of Iran and Iraq. 1937; 69-241.

Abolhassani M. Antibacterial effect of borage (Echium amoenum) on Staphylococcus aureus. Braz J Infect Dis. 2004; 8(5):382-5. https://doi.org/10.1590/S1413-86702004000500008 DOI: https://doi.org/10.1590/S1413-86702004000500008

Sayyah M, Boostani H, Pakseresht S, Malaieri A. Efficacy of aqueous extract of Echium amoenum in treatment of obsessive- compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(8):1513-6. https://doi.org/10.1016/j. pnpbp.2009.08.021 DOI: https://doi.org/10.1016/j.pnpbp.2009.08.021

Muñoz-Espada AC, Watkins BA. Cyanidin attenuates PGE 2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells. J Nutr Biochem. 2006; 17(9):589-96. https://doi.org/10.1016/j.jnutbio.2005.10.007 DOI: https://doi.org/10.1016/j.jnutbio.2005.10.007

Min J, Yu SW, Baek SH, Nair KM, Bae ON, Bhatt A, et al. Neuroprotective effect of cyanidin-3-Oglucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett. 2011; 500(3):157-61. https://doi.org/10.1016/j.neulet.2011.05.048 DOI: https://doi.org/10.1016/j.neulet.2011.05.048

Lis-Balchin M. Aromatherapy science: a guide for healthcare professionals. Pharmaceutical press. 2006.

Buchbauer G, Jirovetz L, Jäger W, Dietrich H, Plank C. Aromatherapy: Evidence for sedative effects of the essential oil of lavender after inhalation. Z Naturforsch C J Biosci. 1991; 46(11-12):1067-72. https://doi.org/10.1515/znc-1991-11-1223 DOI: https://doi.org/10.1515/znc-1991-11-1223

Yamada K, Mimaki Y, Sashida Y. Anticonvulsive effects of inhaling lavender oil vapour. Biol Pharm Bull. 1994; 17(2):359-60. https://doi.org/10.1248/bpb.17.359 DOI: https://doi.org/10.1248/bpb.17.359

Blumenthal M, et al. The complete German Commission E monographs: Therapeutic guide to herbal medicine. Austin: American Botanical Council. 1998.

Emamghoreishi M, Talebianpour MS. Antidepressant effect of Melissa officinalis in the forced swimming test. DARU J Pharm Sci. 2015; 17(1):42-7.

Taherpour AA, Maroofi H, Rafie Z, Larijani K. Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Nat Prod Res. 2012; 26(2):152-60. https://doi.org/10.1080/14786419.2010.534733 DOI: https://doi.org/10.1080/14786419.2010.534733

Shafie-Zadeh F. Lorestan medicinal plants. Lorestan University of Medical Sciences; 2002.

Dibble LE, Hale TF, Marcus RL, Gerber JP, LaStayo PC. High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson’s disease: A preliminary study. Parkinsonism Relat Disord. 2009; 15(10):752-7. https://doi.org/10.1016/j.parkreldis.2009.04.009 DOI: https://doi.org/10.1016/j.parkreldis.2009.04.009

Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol. 2014; 49(1):28-38. https://doi.org/10.1007/s12035-013-8483-x DOI: https://doi.org/10.1007/s12035-013-8483-x

Sonboli A, Mojarrad M, Nejad Ebrahimi S, Enayat S. Free radicalIran. Iran J Pharm Res. 2010; 9(3):293-6.

Arctander S. Perfume and flavor materials of natural origin. Perfume Flavor Mater Nat Orig. 1960.

Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Bahramian F, Bekhradnia AR. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata. Pak J Pharm Sci. 2010; 23(1):29-34.

Vishal A, et al. Diuretic, laxative and toxicity Studies of Viola odorata aerial parts. Pharmacol. 2009; 1:739-48.

Cimicifuga racemosa (L.) Nutt. American herbal pharmacopoeia botanical pharmacognosy. Actea racemosa L. syn. In: In: Upton R, editor. American herbal pharmacopoeia botanical pharmacognosy. CRC Press. 2011; 217-22.

Mohammad-Alizadeh-Charandabi S, Shahnazi M, Nahaee J, Bayatipayan S. Efficacy of black cohosh (Cimicifuga racemosa L.) in treating early symptoms of menopause: A randomized clinical trial. Chin Med. 2013; 8(1):20. https://doi.org/10.1186/1749-8546-8-20 DOI: https://doi.org/10.1186/1749-8546-8-20

Nikolić D, Li J, Van Breemen RB. Metabolism of Nmethylserotonin, a serotonergic constituent of black cohosh. Biomed Chromatogr. 2014; 28(12):1647-51. https://doi.org/10.1002/bmc.3197 DOI: https://doi.org/10.1002/bmc.3197

Amsterdam JD, Yao Y, Mao JJ, Soeller I, Rockwell K, Shults J. Randomized, double-blind, placebo-controlled trial of Cimicifuga racemosa (black cohosh) in women with anxiety disorder due to menopause. J Clin Psychopharmacol. 2009; 29(5):478-83. https://doi.org/10.1097/JCP.0b013e3181b2abf2 DOI: https://doi.org/10.1097/JCP.0b013e3181b2abf2

Sarris J, Kean J, Schweitzer I, Lake JH. Complementary medicines (herbal and nutritional products) in the treatment of Attention Deficit Hyperactivity Disorder (ADHD): A systematic review of the evidence. Complement Ther Med. 2011; 19(4):216-27. https://doi.org/10.1016/j.ctim.2011.06.007 DOI: https://doi.org/10.1016/j.ctim.2011.06.007

Schirrmacher K, Busselberg D, Langosch JM, Walden J, Winter U, Bingmann D. Effects of ()-kavain on voltage activated inward currents of dorsal rhizome ganglion cells from neonatal rats. Eur. Neuropsychopharmacol. 1999; 9:171- 176. https://doi.org/10.1016/S0924-977X(98)00008-X DOI: https://doi.org/10.1016/S0924-977X(98)00008-X

Wu D, Yu L, Nair MG, DeWitt DL, Ramsewak RS. Cyclooxygenase enzyme inhibitory compounds with antioxidant activities from Piper methysticum (kavakava) roots. Phytomedicine. 2002; 9(1):41-7. https://doi.org/10.1078/0944-7113-00068 DOI: https://doi.org/10.1078/0944-7113-00068

Sarris J, Stough C, Bousman CA, Wahid ZT, Murray G, Teschke R, et al. Kava in the treatment of generalized anxiety disorder: a double-blind, randomized, placebo-controlled study. J Clin Psychopharmacol. 2013; 33(5):643-8. https://doi.org/10.1097/JCP.0b013e318291be67 DOI: https://doi.org/10.1097/JCP.0b013e318291be67

Ketola RA, Viinamäki J, Rasanen I, Pelander A, Goebeler S. Fatal kavalactones intoxication by suicidal intravenous injection. Forensic Sci Int. 2015; 249:e7-11. https://doi.org/10.1016/j.forsciint.2015.01.032 DOI: https://doi.org/10.1016/j.forsciint.2015.01.032

Nakazawa T, Yasuda T, Ueda J, Ohsawa K. Antidepressantlike effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull. 2003; 26(4):474-80. https://doi.org/10.1248/bpb.26.474 DOI: https://doi.org/10.1248/bpb.26.474

Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016; 296:318-25. https://doi.org/10.1016/j.bbr.2015.09.031 DOI: https://doi.org/10.1016/j.bbr.2015.09.031

Li RP, Zhao D, Qu R, Fu Q, Ma SP. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci Lett. 2015; 594:17-22. https://doi.org/10.1016/j.neulet.2015.03.040 DOI: https://doi.org/10.1016/j.neulet.2015.03.040

Liu C, Wu J, Gu J, Xiong Z, Wang F, Wang J, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav. 2007; 86(3):423-30. https://doi.org/10.1016/j.pbb.2006.11.005 DOI: https://doi.org/10.1016/j.pbb.2006.11.005

Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, et al. Chronic administration of baicalein decreases depressionlike behavior induced by repeated restraint stress in rats. Korean J Physiol Pharmacol. 2013; 17(5):393-403. https://doi.org/10.4196/kjpp.2013.17.5.393 DOI: https://doi.org/10.4196/kjpp.2013.17.5.393

Li YC, Shen JD, Li J, Wang R, Jiao S, Yi LT. Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behavior: involving the inhibition of cyclooxygenase- 2 in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 40:138-43. https://doi.org/10.1016/j.pnpbp.2012.09.007 DOI: https://doi.org/10.1016/j.pnpbp.2012.09.007

Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther. 2020; 20(1):241. https://doi.org/10.1186/s12906-020-03033-z DOI: https://doi.org/10.1186/s12906-020-03033-z

Ma Z, Wang G, Cui L, Wang Q. Myricetin attenuates depressant- like behavior in mice subjected to repeated restraint stress. Int J Mol Sci. 2015; 16(12):28377-85. https://doi.org/10.3390/ijms161226102 DOI: https://doi.org/10.3390/ijms161226102

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, inflammation and immunity. Nutrients. 2016; 8(3):167. https://doi.org/10.3390/nu8030167 DOI: https://doi.org/10.3390/nu8030167

Demir EA, Gergerlioglu HS, Oz M. Antidepressant like effects of quercetin in diabetic rats are independent of hypothalamicpituitary-adrenal axis. Acta Neuropsychiatry. 2016; 28(1):23-30. https://doi.org/10.1017/neu.2015.45 DOI: https://doi.org/10.1017/neu.2015.45

Ganeshpurkar A, Saluja AK. The pharmacological potential of Rutin. Saudi Pharm J. 2017; 25(2):149-64. https://doi.org/10.1016/j.jsps.2016.04.025 DOI: https://doi.org/10.1016/j.jsps.2016.04.025

Al-Dhabi NA, Arasu MV, Park CH, Park SU. An up-todate review of rutin and its biological and pharmacological activities. Excli J. 2015; 14:59-63. doi: 10.17179/excli2014- 663.

Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Rutin: A review on extraction, identification and purification methods, biological activities, and approaches to enhance its bioavailability. Trends Food Sci Technol. 2017; 67:220-35. https://doi.org/10.1016/j.tifs.2017.07.008 DOI: https://doi.org/10.1016/j.tifs.2017.07.008

Most read articles by the same author(s)

1 2 > >>