Exploring the Potential of Traditional Herbal Plants in the Management of Diabetes Mellitus: A Comprehensive Investigation
DOI:
https://doi.org/10.18311/jnr/2024/36061Keywords:
Diabetes, Diabetes Treatment, Epidemiology, Hypoglycemic Agent, Medicinal PlantsAbstract
Diabetes Mellitus (DM) is one of the most prevalent chronic conditions bearing considerable social, health, and economic ramifications. Uncontrolled DM manifests secondary complications such as foot ulceration, retinopathy, neuropathy, nephropathy, and cardiomyopathy. The heterogeneity inherent in DM necessitates a comprehensive therapeutic strategy that is equally safe and effective against multifaceted diseases like DM. Conventionally, DM management relies on lifestyle modifications and dietary adjustments, complemented by pharmacological interventions. However, the limitations associated with oral hypoglycaemic agents prompt an exploration of alternative modalities. These days, substantial resources within healthcare are dedicated to investigating traditional systems of medicine, notably Ayurveda and traditional Chinese medicine, seeking novel interventions for DM management. This systematic review aims to evaluate the available literature of 2017-2023, focusing on identifying herbs with potential efficacy in DM management with their potent mechanism of action. By synthesizing current scientific knowledge, the review elucidates the intricate molecular-level mechanisms of action of medicinal plants in DM. This contribution enriches the scientific discourse by providing a comprehensive resource for the nuanced exploration of innovative approaches to address the complex facets of DM. As healthcare endeavours to diversify its strategies, the insights from this review may pave the way for developing novel and effective interventions for managing DM using medicinal plants.
Downloads
Metrics
Downloads
Published
How to Cite
License
Copyright (c) 2024 Priyanka Bansal, Sanskriti, Avijit Mazumder, Bhavani Pentela, Pankaj Kumar Tyagi, Navneet Khurana (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-03-21
Published 2024-05-28
References
Verma AK, Goyal Y, Bhatt D, Dev K, Alsahli MA, Rahmani AH, Almatroudi A. A compendium of perspectives on diabetes: a challenge for sustainable health in the modern era. Diabetes Metab Syndr Obes. 2021; 17:2775-87. https://doi.org/10.2147/DMSO.S304751 PMid:34168477 PMCid:PMC8216699
Mathur P, Leburu S, Kulothungan V. Prevalence, awareness, treatment and control of diabetes in India from the countrywide national NCD monitoring survey. Front Public Health. 2022; 10. https://doi.org/10.3389/fpubh.2022.748157 PMid:35359772 PMCid:PMC8964146
Anjana RM, Unnikrishnan R, Deepa M, Venkatesan U, Pradeepa R, Joshi S, et al. Achievement of guideline-recommended diabetes treatment targets and health habits in people with self-reported diabetes in India (ICMR-INDIAB-13): A national cross-sectional study. Lan Dia Endocrinol. 2022; 10(6):430-41. https://doi.org/10.1016/S2213-8587(22)00072-9 PMid:35461575
Dahal C. Further development and application of the metabotyping concept (Doctoral dissertation, lmu); 2023.
Kaur G, Chauhan AS, Prinja S, Teerawattananon Y, Muniyandi M, Rastogi A, et al. Cost-effectiveness of population-based screening for diabetes and hypertension in India: An economic modelling study. Lan Pub Hea. 2022; 7(1):e65-73. https://doi.org/10.1016/S2468-2667(21)00199-7 PMid:34774219
Das AK, Saboo B, Maheshwari A, Banerjee S, Jayakumar C, Mohan AR, et al. Health care delivery model in India with relevance to diabetes care. Heliyon. 2022; 8(10). https://doi.org/10.1016/j.heliyon.2022.e10904 PMid:36237970 PMCid:PMC9552106
Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: Prospects of astaxanthin. Crit Rev Food Sci Nutr. 2022; 62(18):5005-28. https://doi.org/10.1080/10408398.2021.1881434 PMid:33591215
Wang M, Liang Y, Chen K, Wang M, Long X, Liu H, et al. The management of diabetes mellitus by mangiferin: Advances and prospects. Nanoscale. 2022; 14(6):2119-35. https://doi.org/10.1039/D1NR06690K PMid:35088781
Balwan WK, Saba N, Zargar JI. Burden of diabetes and role of medicinal plants in its treatment. Saudi J Med Phar Sci. 2022; 8(7):355-61. https://doi.org/10.36348/sjmps.2022.v08i07.006
Ansari P, Akther S, Hannan JM, Seidel V, Nujat NJ, Abdel-Wahab YH. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules. 2022; 27(13). https://doi.org/10.3390/molecules27134278 PMid:35807526 PMCid:PMC9268530
Ahmed OM, Fattah AAA, Abdul-Hamid M, Abdel-Aziz AM, Sakr HI, Damanhory AA, et al. Antidiabetic and liver histological and ultrastructural effects of Cynara scolymus leaf and flower head hydroethanolic extracts in nicotinamide/streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2023; 2023. https://doi.org/10.1155/2023/4223026 PMid:37163198 PMCid:PMC10164244
Gad MH, Al-Seeni MA, El-Sawi NM, Abbas A, Mahrous AM, Habib TN. Assessment of the ameliorative and antihyperglycemic effects of fractions of Ipomoea aquatica in male rats with streptozotocin-induced diabetes. Res Sq.
El Ghouizi A, Ousaaid D, Laaroussi H, Bakour M, Aboulghazi A, Soutien RS, et al. Ficus Carica (Linn.) leaf and bud extracts and their combination attenuates Type-1 diabetes and its complications via the inhibition of oxidative stress. Foods. 2023; 12(4). https://doi.org/10.3390/foods12040759 PMid:36832834 PMCid:PMC9956282
Helmy SA, Morsy NF, Elaby SM, Ghaly MA. Antidiabetic effect of combined leaf extracts of Portulaca oleracea L., Beta vulgaris L., and Cichorium intybus L. in streptozotocin-induced diabetic rats. J Med Food. 2023. https://doi.org/10.1089/jmf.2022.0119 PMid:37801671
Jadhav VB, Vaghela JS. Nephroprotective Potential of Sphaeranthus indicus Linn extract against hyperglycemia and dyslipidemia in streptozotocin-induced diabetic nephropathy. J Allied Health Sci. 2023. https://doi.org/10.1055/s-0043-1769511
Ahamd AR, Malik A, Handayani V. In vivo and in vitro antidiabetic assay of purified mahoni seeds extract (Swietenia Mahagoni (L.) Jacq). Biomed Pharmacol. 2023; 16(3):1701-6. https://doi.org/10.13005/bpj/2748
Han M, Yang F, Zhang K, Ni J, Zhao X, Chen X, et al. Antioxidant, Anti-Inflammatory and Anti-diabetic activities of tectona grandis methanolic extracts, fractions, and isolated compounds. Antioxidants. 2023; 12(3). https://doi.org/10.3390/antiox12030664 PMid:36978912 PMCid:PMC10044725
Alqahtani MS, Shukla A, Harsola L, Shaik B, Syed R, Hassan AM. Mitragyna parvifolia-effective against hyperglycaemia, proinflammatory markers and liver apoptosis in streptozotocin induced diabetic rats. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-3342541/v1
Divya M, Shanti G, Amalraj S, Amiri-Ardekani E, Gurav S, Ayyanar M. Evaluation of in vitro enzyme inhibitory, anti-inflammatory, antioxidant, and antibacterial activities of Oldenlandia corymbosa L. and Oldenlandia umbellata L. whole plant extracts. Pharmacol Res - Mod Chin Med. 2023; 8. https://doi.org/10.1016/j.prmcm.2023.100286
Kingsley O, Ngwu EE, Mbanaso EL. Assessment of the anti-diabetic potential of ethanol leaf extract of Crateva adansonii in streptozotocin induced diabetic rats. Int J Life Sci Arc. 2023; 4(1): 222–226. https://doi.org/10.53771/ijlsra.2023.4.1.0022
Sharma J, Sharma S, Koul A, Shankarayan R, Mallubhotla S. Bioactivity evaluation of least explored traditionally acclaimed medicinally potent herb Nanorrhinum ramosissimum (Wall.) Betsche. Braz J Pharm Sci. 2023; 59. https://doi.org/10.1590/s2175-97902023e19334
Thakur SK, Raju MG, Sree P, Sowmya S, Sree Lakshmi S, Suchitra J. Green synthesis and characterization of silver nanoparticles from Millingtonia hortensis and their antidiabetic and antioxidant efficacy. Asian Plant Res J. 2023; 11(5):19-29. https://doi.org/10.9734/aprj/2023/v11i5222
Rafailovska E, Tushevski O, Shijakova K, Simic SG, Kjovkarovska SD, Miova B. Hypericum perforatum L. extract exerts insulinotropic effects and inhibits gluconeogenesis in diabetic rats by regulating AMPK expression and PKCε concentration. J Ethnopharmacol. 2023; 302. https://doi.org/10.1016/j.jep.2022.115899 PMid:36336219
Si X, Si Y, Zhang S, Liu Y, Liu Y, Wang H, et al. Effect of grain/bran crude extract from Fagopyrum tataricum on hypoglycemic activity of Type 2 diabetes mice and study on molecular mechanism of treatment. Cogent Food Agric. 2023; 9(1). https://doi.org/10.1080/23311932.2023.2242641
Ahmad MF, Haidar MA, Naseem N, Ahsan H, Siddiqui WA. Hypoglycaemic, hypolipidaemic and antioxidant properties of Celastrus paniculatus seed extract in STZ-induced diabetic rats. Cell Mol Biomed Rep. 2023; 7(1):10-7. https://doi.org/10.21705/mcbs.v7i1.282
Mim IJ, Peya FY, Chowdhury MM, Khan TR, Mandal SK, Maliha F, et al. An evaluation of anti-diabetic activity of ethanolic extract of Asparagus racemosus in alloxan induced rat model. Int J Nephrol. 2023; 6(1):60-8.
Chávez-Bustos EA, Morales-González A, Anguiano-Robledo L, Madrigal-Santillán EO, Valadez-Vega C, Lugo-Magaña O, et al. Bauhinia forficata link, antioxidant, genoprotective, and hypoglycemic activity in a murine model. Plants. 2022; 11(22). https://doi.org/10.3390/plants11223052 PMid:36432781 PMCid:PMC9692633
Amare YE, Dires K, Asfaw T. Antidiabetic activity of mung bean or Vigna radiata (L.) wilczek seeds in alloxan-induced diabetic mice. Evid Based Complement Alternat Med. 2022; 2022. https://doi.org/10.1155/2022/6990263 PMid:36337582 PMCid:PMC9629934
Iqbal J, Andleeb A, Ashraf H, Meer B, Mehmood A, Jan H, et al. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv. 2022; 12(22):14069-83. https://doi.org/10.1039/D2RA01929A PMid:35558860 PMCid:PMC9094097
Giri S, Dey G, Dua TK. Antioxidant and antidiabetic activity of hydroalcoholic flower extract of Woodfordia fruticosa (L.) Kurz. J Drug Deliv Ther. 2022; 12(1):1-6. https://doi.org/10.22270/jddt.v12i1.5247
Muzammil S, Andleeb R, Hayat S, Ijaz MU, Ashraf A, Zafar N, et al. Integrating in silico and in vitro approaches to screen the antidiabetic properties from Tabernaemontana divaricata (Jasmine) flowers. Evid Based Complement Alternat Med. 2022; 2022. https://doi.org/10.1155/2022/4616815 PMid:35685730 PMCid:PMC9173979
Sadiq ME, Egwuenu C, Wasagu RS, Umar UZ, Usman B. β-Islet cell regeneration potential of Mirabilis jalapa in hyperglycemic rats. Asian Pac J Trop Biomed. 2022; 12(8):351-6. https://doi.org/10.4103/2221-1691.350183
Vijay N, Shashikant D, Mohini P. Assessment of antidiabetic potential of Musa acuminata peel extract and its fractions in experimental animals and characterisation of its bioactive compounds by HPTLC. Arc Physiolo Biochem. 2022; 128(2):360-72. https://doi.org/10.1080/13813455.2019.1683585 PMid:31687854
Hassan MM, Uddin S, Bhowmik A, Ashraf A, Islam MM, Rokeya B. Phytochemical screening and antidiabetic effects of fruit rind of Momordica dioica roxb. on streptozocin induced Type 2 diabetic rats. Heliyon. 2022; 8(1). https://doi.org/10.1016/j.heliyon.2022.e08771 PMid:35128091 PMCid:PMC8808062
Iwara IA, Mboso EO, Eteng OE, Elot KN, Igile GO, Ebong PE. Peristrophe bicalyculata extract and Quercetin ameliorate high fat diet-streptozotocin-induced Type II diabetes in Wistar rats. Pharmacol Res - Mod Chin Med. 2022; 2. https://doi.org/10.1016/j.prmcm.2022.100060
Shah BP, Patel DR, Shah SK. Ameliorative effect of ethanolic extract of Coptis Teeta Wall. roots in alloxan induced diabetic rats. Ind Drug. 2022; 59(11). https://doi.org/10.53879/id.59.11.13313
Makuttan S, Fernandes J. Anti-diabetic potential of fruit extracts of Flacourtia indica (Burm. F.) Merr - An in-vitro study. Indian J Nat Prod Resour. 2022; 13(4):491-6.
Khatun R, Khanam F, Juhi SA, Khatune NA, Rahman MA. In vitro evaluation of anti-diabetic and anti-inflammatory activities of ethanolic extract of Lawsonia inermis L. leaves (Family: Lythraceae). J Pharmacogn Phytochem. 2022; 11(1):252-5.
Khouya T, Ramchoun M, Elbouny H, Hmidani A, Alem C. Loquat (Eriobotrya japonica (Thunb) Lindl.): Evaluation of nutritional value, polyphenol composition, antidiabetic effect, and toxicity of leaf aqueous extract. J Ethnopharmacol. 2022; 296. https://doi.org/10.1016/j.jep.2022.115473 PMid:35718052
Balamurugan V, Sridhivya M, Dharani R, Selvakumar S, Vasanth K. Phytochemical screening, antioxidant, antidiabetic and anticancer activities of Elaeocarpus variabilis fruit. Turk Tarim Gida Bilim Teknol Derg. 2022; 10(8):1352-62. https://doi.org/10.24925/turjaf.v10i8.1352-1362.4851
Muhammad HL, Garba R, Abdullah AS, Adefolalu FS, Busari MB, Hamzah RU, et al. Hypoglycemic and hypolipidemic properties of Casuarina equisetifolia leaf extracts in alloxan induced diabetic rats. Pharmacol Res - Mod Chin Med. 2022; 2. https://doi.org/10.1016/j.prmcm.2021.100034
Bilal HM, Sharif A, Malik MN, Zubair HM. Aqueous ethanolic extract of Adiantum incisum Forssk. Protects against Type 2 diabetes mellitus via attenuation of α-amylase and oxidative stress. ACS Omega. 2022; 7(42):37724-35. https://doi.org/10.1021/acsomega.2c04673 PMid:36312418 PMCid:PMC9607679
Kumar M, Barbhai MD, Hasan M, Punia S, Dhumal S, Rais N, et al. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed Pharmacother. 2022; 146. https://doi.org/10.1016/j.biopha.2021.112498 PMid:34953395
Cura JK, Basilio A, Llagas MC. Antidiabetic, anti-inflammatory and cytotoxic potential of Theobroma cacao Linn. husk aqueous extracts. Clin Phytosci. 2021; 7(1):1-7. https://doi.org/10.1186/s40816-021-00320-1
Mohammed A, Awolola GV, Ibrahim MA, Koorbanally NA, Islam MS. Oleanolic acid as a potential antidiabetic component of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit: bioassay guided isolation and molecular docking studies. Nat Prod Res. 2021; 35(5):788-91. https://doi.org/10.1080/14786419.2019.1596094 PMid:30990061
Kumar V, Sachan R, Rahman M, Sharma K, Al-Abbasi FA, Anwar F. Prunus amygdalus extract exert antidiabetic effect via inhibition of DPP-IV: In-silico and in-vivo approaches. J Biomol Struct Dyn. 2021; 39(11):4160-74. https://doi.org/10.1080/07391102.2020.1775124 PMid:32602806
Babu AR, Sunny A, John DB, Sharma S. Anti-diabetic activity by invitro inhibition of α-amylase enzyme and phytochemical screening of Phyllanthus niruri. Cur Trends Biotechnol Phar. 2021; 15(5):511-8. https://doi.org/10.5530/ctbp.2021.3s.48
Saghir F, Hussain K, Tahir MN, Raza SA, Shehzadi N, Iftikhar S, et al. Antidiabetic screening, activity-guided isolation and molecular docking studies of flower extracts of Pongamia pinnata (L.) pierre. J Medicinal Plants By-Products. 2021; 10(1):85-92.
Kumar V, Sachan R, Rahman M, Sharma K, Al-Abbasi FA, Anwar F. Prunus amygdalus extract exert antidiabetic effect via inhibition of DPP-IV: In-silico and in-vivo approaches. J Biomol Struct Dyn. 2021; 39(11):4160-74. https://doi.org/10.1080/07391102.2020.1775124 PMid:32602806
Jawahar BS, Rajendran AP. Antidiabetic activity of green synthesized zinc oxide nanoparticles using Quercus infectoria. Int J Zool Investig. 2021; 7(2):1009-21. https://doi.org/10.33745/ijzi.2021.v07i02.092
Inayatillah B, Jauhar T, Mastutik G, Rahniayu A. Hypoglycemic effects of Rosa damascena Mill. ethanolic extract on blood glucose levels and diameter of Langerhans pancreatic islets. Indian J Forensic Med Toxicol. 2021; 15(2):2133-41. https://doi.org/10.37506/ijfmt.v15i2.14679
Khan MS, Aziz S, Khan MZ, Khalid ZM, Riaz M, Ahmed D, et al. Antihyperglycemic effect and phytochemical investigation of Rubia cordifolia (Indian Madder) leaves extract. Open Chem. 2021; 19(1):586-99. https://doi.org/10.1515/chem-2021-0053
Choudhary N, Khatik GL, Sharma R, Khurana N, Lobo R, Bhatt S, et al. Ameliorative potential of Operculina turpethum against streptozotocin-induced diabetes in rats: Biochemical and histopathological studies. 3 Biotech. 2021; 11(6). https://doi.org/10.1007/s13205-021-02811-x PMid:34194901 PMCid:PMC8172823
Thilagam E, Chidambaram K, Raviteja C, Vahana T, Vasudevan P, Garrido G. Anti-hyperglycemic and hypolipidemic effects of Saraca asoca (Roxb.) Wild. flowers in alloxan-treated diabetic rats. J Pharm Pharmacogn. 2021; 9(1):58-68. https://doi.org/10.56499/jppres20.894_9.1.58 PMid:15757872
Septiana E, Rizka NM, Yadi Y, Simanjuntak P. Antidiabetic activity of extract combination of Orthosiphon aristatus and Oryza sativa L. var glutinosa. Borneo J Pharm. 2021; 4(3):202-9. https://doi.org/10.33084/bjop.v4i3.2154
Agrawal OP, Mourya N. Identification of bioactive compounds extracted from barks of Kandelia rheediia and evaluation of in vitro antidiabetic potential. J Adv Sci Res. 2021; 12(01 Suppl 1):85-9.
Ramya P, Krishnadhas L. Anti-diabetic activity of silver nanoparticles synthesized from The hydroethanolic extract of Myristica fragrans seeds. Appl Biochem Biotechnol. 2022; 194(3):1136-48. https://doi.org/10.1007/s12010-022-03825-8 PMid:35091876
Tyagi CK. Antidiabetic evaluation of methanolic extract of Lagerstroemia parviflora Roxb. in streptozotocin-induced diabetic Wistar albino rat model. Int J Green Pharm. 2021; 15(1).
Aisami A, James JI, Maigari FU, Atiku MK. Hypoglycemic effect of Lycopersicon esculentum (Tomato) on alloxan-induced diabetic rats. World J Microbiol Biotechnol. 2021; 9(2):15-8. https://doi.org/10.54987/jobimb.v9i2.611
Mariadoss AV, Park S, Saravanakumar K, Sathiyaseelan A, Wang MH. Ethyl acetate fraction of Helianthus tuberosus L. induces anti-diabetic, and wound-healing activities in insulin-resistant human liver cancer and mouse fibroblast cells. Antioxidants. 2021; 10(1):99. https://doi.org/10.3390/antiox10010099 PMid:33445702 PMCid:PMC7828129
Khalaf SJ, Aljader GH, Sarhat ER, Sarhat TR, Abass KS. Antidiabetic effect of aqueous extract of Medicago sativa with enhanced histopathology of pancreas in alloxan induced diabetic rats. Pak J Med Health Sci. 2021; 15(2):492-6.
Hago S, Mahrous EA, Moawad M, Abdel-Wahab S, Abdel-Sattar E. Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Nat Prod Res. 2021; 35(5):829-35. https://doi.org/10.1080/14786419.2019.1601094 PMid:30968706
Kasireddy GR, Kumar KS, Nadithe LR, Chinnam P. Experimental evaluation of hypoglycemic effect of bark extract of Ficus benghalensis in streptozotocin-induced diabetic rats. Natl J Physiol Pharm Pharmacol. 2021; 11(3):320-5. https://doi.org/10.5455/njppp.2021.11.12359202023012021
Mule VS, Naikwade NS. Antidiabetic effect of fruit and cork extracts of Ficus lacor Buch. Ham. in streptozotocin-induced diabetic rats. J Appl Pharm Sci. 2021; 12(1):131-9.
Jayant KK, Vijayakumar BS. In-vitro anti-oxidant and anti-diabetic potential of endophytic fungi associated with Ficus religiosa. Ital J Mycol. 2021; 50:10-20.
Ansari MN, Saeedan AS, Bajaj S, Singh L. Evaluation of antidiabetic and hypolipidemic activity of Barleria cristata Linn. leaves in alloxan-induced diabetic rats. 3 Biotech. 2021; 11(4). https://doi.org/10.1007/s13205-021-02728-5 PMid:33927962 PMCid:PMC7969671
Grácio M, Rocha J, Pinto R, Ferreira RB, Solas J, Eduardo‐Figueira M, et al. A proposed lectin‐mediated mechanism to explain the in vivo antihyperglycemic activity of γ‐conglutin from Lupinus albus seeds. J Food Sci Nutr. 2021 Nov;9(11):5980-96. https://doi.org/10.1002/fsn3.2520 PMid:34760231 PMCid:PMC8565248
Suchithra MR, Bhuvaneswari S, Sampathkumar P, Dineshkumar R, Chithradevi K, Madhumitha R, et al. In vitro study of antioxidant, antidiabetic and antiurolithiatic activity of synthesized silver nanoparticles using stem bark extracts of Hybanthus enneaspermus. Biocatal Agric Biotechnol. 2021; 38. https://doi.org/10.1016/j.bcab.2021.102219
Thanh TT, Quach TT, Yuguchi Y, Nguyen NT, Van Ngo Q, Van Bui N, et al. Molecular structure and anti-diabetic activity of a polysaccharide extracted from pumpkin Cucurbita pepo. J Mol Struct. 2021; 1239. https://doi.org/10.1016/j.molstruc.2021.130507
Ghara AR, Ghadi FE, Hosseini SH, Piacente S, Cerulli A, Alizadeh A, et al. Antioxidant and antidiabetic effect of Capparis decidua Edgew (Forssk.) extract on liver and pancreas of streptozotocin-induced diabetic rats. Appl Biotechnol Rep. 2021; 8(1).
Bello M, Jiddah-kazeem B, Fatoki TH, Ibukun EO, Akinmoladun AC. Antioxidant property of Eucalyptus globulus Labill. Extracts and inhibitory activities on carbohydrate metabolizing enzymes related to type-2 diabetes. Biocatal Agric Biotechnol. 2021; 36. https://doi.org/10.1016/j.bcab.2021.102111
Hegedűs C, Muresan M, Badale A, Bombicz M, Varga B, Szilágyi A, et al. SIRT1 activation by Equisetum arvense L. (Horsetail) modulates insulin sensitivity in streptozotocin induced diabetic rats. Molecules. 2020; 25(11). https://doi.org/10.3390/molecules25112541 PMid:32486051 PMCid:PMC7321376
Uwazie JN, Yakubu MT, Ashafa AO, Ajiboye TO. Identification and characterization of anti-diabetic principle in Senna alata (Linn.) flower using alloxan-induced diabetic male Wistar rats. J Ethnopharmacol. 2020; 261. https://doi.org/10.1016/j.jep.2020.112997 PMid:32534114
Issa TO, Ahmed AIM, Mohamed YS, Yagi S, Makhawi AM, Khider TO. Physiochemical, insecticidal, and antidiabetic activities of Senna occidentalis Linn root. Biochem Res Int. 2020; 2020. https://doi.org/10.21203/rs.3.rs-28860/v1
Gupta A, Kumar R, Pandey AK. Antioxidant and antidiabetic activities of Terminalia bellirica fruit in alloxan induced diabetic rats. S Afr J Bot. 2020; 130:308-15. https://doi.org/10.1016/j.sajb.2019.12.010
Altaee EH, Karim AJ, Dakheel MM. Assessment of anti-diabetic activity of Vinca rosea extract on induced diabetic mice. Indian J Forensic Med Toxicol. 2020; 14(4):2311-8.
Musdja MY, Nurdin A, Musir A. Antidiabetic effect and glucose tolerance of areca nut (Areca catechu) seed ethanol extract on alloxan-induced diabetic male rats. IOP Conference Series: Earth and Environmental Science, Volume 462. 3rd Int Conf Nat Prod Bio Sci, 2019 Oct 23-24, Indonesia: Tangerang; 2019.
Deepak KG, Challa S, Suhasin G, Reddy NNR, Elansary HO, El-Ansary DO. Antidiabetic and antilipidemic activity of root extracts of Salacia oblonga against streptozotocin-induced diabetes in Wistar rats. Processes. 2020; 8(3). https://doi.org/10.3390/pr8030301
AlKhaldi K, Daghestani M, Al-Haddad T. In vitro anti-diabetic activity of Tribulus terrestris L. fruits extracts. Int J Food Sci Nutr. 2020; 50(4):631-40. https://doi.org/10.1108/NFS-06-2019-0180
Baset ME, Ali TI, Elshamy H, El Sadek AM, Sami DG, Badawy MT, et al. Anti-diabetic effects of fenugreek (Trigonella foenum-graecum): A comparison between oral and intraperitoneal administration-an animal study. Int J Funct Nutr. 2020; 1(1). https://doi.org/10.3892/ijfn.2020.2
Juee LY, Naqishbandi AM. Calabash (Lagenaria siceraria) potency to ameliorate hyperglycemia and oxidative stress in diabetes. J Funct Foods. 2020; 66. https://doi.org/10.1016/j.jff.2020.103821
Tiwari A, Tyagi CK, Pandey H, Shah SK. Pharmacological modeling and study for antidiabetic activity of Praecitrullus fistulosus leaves extracts. J Drug Deliv Ther. 2020; 10(4-s):13-6. https://doi.org/10.22270/jddt.v10i4-s.4276
Munira S, Nesa L, Islam MS, Begum Y, Rashid MA, Sarker MR, et al. Antidiabetic activity of Neolamarckia cadamba (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. Clin Phytosci. 2020; 6(1):1-6. https://doi.org/10.1186/s40816-020-00183-y
Rokaya MB, Parajuli B, Bhatta KP, Timsina B. Neopicrorhiza scrophulariiflora (Pennell) Hong: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. J Ethnopharmacol. 2020; 247. https://doi.org/10.1016/j.jep.2019.112250 PMid:31586694
Dinlakanont NA, Palanuvej CH, Ruangrungsi NI. In vitro antidiabetic potentials of Sida acuta, Abutilon indicum and Malvastrum coromandelianum. J Curr Pharm Res. 2020; 12(4):87-9. https://doi.org/10.22159/ijcpr.2020v12i4.39088
Kumar S, Shachi K, Prasad N, Dubey NK, Dubey U. Anti-diabetic, haematinic and anti-cholesterolmic effects of carrot (Daucus carota Linn.) juice metabolites to cure alloxan monohydrate induced type-1 diabetes in albino rats. J Diabetes Metab Disord Control. 2020; 7:37-40. https://doi.org/10.15406/jdmdc.2020.07.00197
Htwe NN, Thu MM, Naing W. Isolation of bioactive compounds from bark of Mimusops elengi Roxb.(Kha-yay) used in the treatment of hyperglycemia. J Myanmar Aca Arts Sci. 2020; 18:191-9.
Panigrahy SK, Kumar A, Bhatt R. In vitro and in vivo anti-diabetic activity of fractions obtained from the unexplored hedychium coronarium rhizome. Proc Natl Acad Sci India Sect B Biol Sci. 2020; 90:605-14. https://doi.org/10.1007/s40011-019-01125-6
Mittal R, Beniwal A. Antidiabetic and nephroprotective activity of Hedychium spicatum in streptozotocin-induced diabetic rats. Int J Pharm Sci Rev Res. 2020; 8:3256-61. https://doi.org/10.21276/ijprhs.2020.06.04
Ansari P, Azam S, Hannan JM, Flatt PR, Wahab YH. Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. J Ethnopharmacol. 2020; 253. https://doi.org/10.1016/j.jep.2020.112647 PMid:32035878
Al-Yousef HM, Hassan WH, Abdelaziz S, Amina M, Adel R, El-Sayed MA. UPLC-ESI-MS/MS profile and antioxidant, cytotoxic, antidiabetic, and antiobesity activities of the aqueous extracts of three different Hibiscus Species. J Chem. 2020; 2020:1-7. https://doi.org/10.1155/2020/6749176
Kannan M, Kumar TS. Evaluation of antidiabetic activity and antioxidant properties of Gardenia gummifera Lf leaf extract in alloxan induced diabetic models. Int J Botany Stud. 2020; 5(5):759-67.
Wediasari F, Nugroho GA, Fadhilah Z, Elya B, Setiawan H, Mozef T. Hypoglycemic effect of a combined Andrographis paniculata and Caesalpinia sappan extract in streptozocin-induced diabetic rats. Adv Pharmacol Pharm Sci. 2020; 2020. https://doi.org/10.1155/2020/8856129 PMid:33225300 PMCid:PMC7671818
Sachan AK, Rao CV, Sachan NK. Determination of antidiabetic potential in crude extract of Caesalpinia bonducella wild on normal and streptozotocin induced diabetic rats. Res J Pharm Technol. 2020; 13(2):857-61. https://doi.org/10.5958/0974-360X.2020.00162.6
Kaur G, Sankrityayan H, Dixit D, Jadhav P. Cocos nucifera and metformin combination for modulation of diabetic symptoms in streptozotocin induced diabetic rats. J Ayurveda Integr Med. 2020 Jan 1;11(1):3-9. https://doi.org/10.1016/j.jaim.2017.02.006 PMid:29242089 PMCid:PMC7125387
Varalakshmi T, Lakshmi KP, Sridevi K, Krishnan MA. Preliminary phytochemical screening and in vitro evaluation of anti-inflammatory, anti-arthritic and anti-diabetic activities of various extracts of Bridelia retusa fruit. Juni Khyat. 2020; 10(7), 15:129-38.
Solikhah TI, Setiawan B, Ismukada DR. Antidiabetic activity of papaya leaf extract (Carica Papaya L.) isolated with maceration method in alloxan-induces diabetic mice. Syst Rev Pharm. 2020; 11(9):774-8.
Alene M, Abdelwuhab M, Belay A, Yazie TS. Evaluation of antidiabetic activity of Ajuga integrifolia (Lamiaceae) root extract and solvent fractions in mice. Evid Based Complement Alternat Med. 2020; 2020. https://doi.org/10.1155/2020/6642588 PMid:33424989 PMCid:PMC7772015
Pottathil S, Nain P, Morsy MA, Kaur J, Al-Dhubiab BE, Jaiswal S, et al. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Plants. 2020; 9(11). https://doi.org/10.3390/plants9111609 PMid:33228177 PMCid:PMC7699557
Shoaib A, Salem-Bekhit MM, Siddiqui HH, Dixit RK, Bayomi M, Khalid M, et al. Antidiabetic activity of standardized dried tubers extract of Aconitum napellus in streptozotocin‐induced diabetic rats. 3 Biotech. 2020; 10:1-8. https://doi.org/10.1007/s13205-019-2043-7 PMid:32015952 PMCid:PMC6975818
Muñiz-Ramirez A, Perez RM, Garcia E, Garcia FE. Antidiabetic activity of Aloe vera leaves. Evid Based Complement Alternat Med. 2020; 2020. https://doi.org/10.1155/2020/6371201 PMid:32565868 PMCid:PMC7267870
Babu SN, Govindarajan S, Noor A. Aloe vera and its two bioactive constituents in alleviation of diabetes–proteomic and mechanistic insights. J Ethnopharmacol. 2021; 280:114445. https://doi.org/10.1016/j.jep.2021.114445
Fatmawati S, Purnomo AS, Bakar MF. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon. 2020; 6(7). https://doi.org/10.1016/j.heliyon.2020.e04396 PMid:32685725 PMCid:PMC7358271
Baset ME, Ali TI, Elshamy H, El Sadek AM, Sami DG, Badawy MT, et al. Anti-diabetic effects of fenugreek (Trigonella foenum-graecum): A comparison between oral and intraperitoneal administration-an animal study. Int J Funct Nutr. 2020; 1(1). https://doi.org/10.3892/ijfn.2020.2
Sotoudeh R, Gholamnezhad Z, Aghaei A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. Avicenna J Phytomed . 2019; 9(5):454.
Hayaza S, Istiqomah S, Susilo RJ, Inayatillah B, Ansori AN, Winarni D, et al. Antidiabetic activity of ketapang (Terminalia catappa L.) leaves extract in streptozotocin-induced diabetic mice. Indian Vet J. 2019; 96(12):11-3.
Gad-Elkareem MA, Abdelgadir EH, Badawy OM, Kadri A. Potential antidiabetic effect of ethanolic and aqueous-ethanolic extracts of Ricinus communis leaves on streptozotocin-induced diabetes in rats. PeerJ. 2019; 7. https://doi.org/10.7717/peerj.6441 PMid:30805250 PMCid:PMC6383553
Sarkar BK, Barman SK, Akhter S, Akter R, Das J, Sarkar AP, et al. Evaluation of in vitro anti diabetic activity of two mangrove plant extracts: Heritiera fomes and Sonneratia apetala. J Pharmacogn Phytochem. 2019; 8(6):2376-80.
Venkatachalapathi A, Thenmozhi K, Karthika K, Ali MA, Paulsamy S, AlHemaid F, et al. Evaluation of a labdane diterpene forskolin isolated from Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae) revealed promising antidiabetic and antihyperlipidemic pharmacological properties. Saudi J Biol Sci. 2019; 26(7):1710-5. https://doi.org/10.1016/j.sjbs.2018.08.007 PMid:31762648 PMCid:PMC6864183
Elangovan A, Subramanian A, Durairaj S, Ramachandran J, Lakshmanan DK, Ravichandran G, et al. Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats. J Ethnopharmacol. 2019; 241. https://doi.org/10.1016/j.jep.2019.111989 PMid:31150795
Thilagam EL, Chidambaram KU, Mandal SC. Antidiabetic activity of Senna surattensis in alloxan-induced diabetic rats. Asian J Pharm Clin Res. 2018; 11(4):160-3. https://doi.org/10.22159/ajpcr.2018.v11i4.23632
Kirkan B, Sarikurkcu C, Amarowicz R. Composition, and antioxidant and enzyme‐inhibition activities, of essential oils from Satureja thymbra and Thymbra spicata var. spicata. Flavour Fragr J. 2019; 34(6):436-42. https://doi.org/10.1002/ffj.3522
Azadbakht M, Ahmadi SA, Ahangar N. Antidiabetic activity of aqueous seed extract of Securigera securidaca in streptozotocin induced diabetic rats. J Adv Med Med Res. 2019; 27(123):16-22. https://doi.org/10.30699/jambs.27.123.16
Guex CG, Reginato FZ, de Jesus PR, Brondani JC, Lopes GH, de Freitas Bauermann L. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J Ethnopharmacol. 2019; 235:1-7. https://doi.org/10.1016/j.jep.2019.02.001 PMid:30721736
Juanico ER, Jr AA. Anti-diabetic effect of Leucaena Leucocephala Linn. (Ipil-Ipil) seed extract on albino mice. J Bio Innov. 2019; 8:6-12.
Yesmin R, Das PK, Belal H, Aktar S, Ayesha MA, Rakib MA, et al. In vitro antioxidant and antidiabetic assessment of extracts from the bark of Michelia champaca, a medicinal plant in Bangladesh. J Pharm Sci Rev Res. 2019; 8(9):1505-26.
Ly HT, Nguyen TT, Tran TT, Lam BT, Phung TT. Hypoglycemic and antioxidant activities of Clerodendrum inerme leaf extract on streptozotocin-induced diabetic models in mice. Chin Herb Med. 2019; 11(4):387-93. https://doi.org/10.1016/j.chmed.2019.08.001
Rajasekhar A, Peddanna K, Vedasree N, Munirajeswari P, Nagaraju N, Badri KR, et al. Antidiabetic activity of root tubers of Asparagus gonoclados Baker in streptozotocin induced diabetic rats. J Ethnopharmacol. 2019; 242. https://doi.org/10.1016/j.jep.2019.112027 PMid:31226384
Latifi E, Mohammadpour AA, Fathi B, Nourani H. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed Pharmacother. 2019; 110:197-202. https://doi.org/10.1016/j.biopha.2018.10.152 PMid:30471513
Attia ES, Amer AH, Hasanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res. 2019; 33(6):901-5. https://doi.org/10.1080/14786419.2017.1413564 PMid:29237302
Sharmin R, Joarder HH, Alamgir M, Mostofa G, Islam M. Antidiabetic and hepatoprotective activities of Bombax ceiba young roots in alloxan-induced diabetic mice. J Food Sci. 2018; 6:1-7. https://doi.org/10.15226/jnhfs.2018.001140
Rozenberg K, Rosenzweig T. Sarcopoterium spinosum extract improved insulin sensitivity in mice models of glucose intolerance and diabetes. PloS one. 2018; 13(5). https://doi.org/10.1371/journal.pone.0196736 PMid:29768504 PMCid:PMC5955592
Nambirajan G, Karunanidhi K, Ganesan A, Rajendran R, Kandasamy R, Elangovan A, et al. Evaluation of antidiabetic activity of bud and flower of Avaram Senna (Cassia auriculata L.) In high fat diet and streptozotocin induced diabetic rats. Biomed Pharmacother. 2018; 108:1495-506. https://doi.org/10.1016/j.biopha.2018.10.007 PMid:30372851
Lin WS, Lo JH, Yang JH, Wang HW, Fan SZ, Yen JH, et al. Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice. J Ethnopharmacol. 2017; 207:211-9. https://doi.org/10.1016/j.jep.2017.06.044 PMid:28666833
Rynjah CV, Devi NN, Khongthaw N, Syiem D, Majaw S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC. using in vivo and in vitro approaches. J Tradit Complement Med. 2018; 8(1):134-40. https://doi.org/10.1016/j.jtcme.2017.04.007 PMid:29322001 PMCid:PMC5755985
Hussain SN, Uzair M, Qaisar MN, Abbas K, Ashfaq K, Chaudhari BA. Assessment of anti-diabetic activity of Cassia sophera (Caesalpiniaceae). Trop J Pharm Res. 2018; 17(3):443-9. https://doi.org/10.4314/tjpr.v17i3.9
Bashir AS, Mushtaq AA, Mehboob TO. Evaluation of antioxidant and antidiabetic activity of Phyllanthus emblica (fruit). Biologia. 2018; 64(1):85-91.
Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Nzor JN. Phytochemical constituents, antidiabetic and ameliorative effects of Polyalthia longifiola leaf extract in alloxan-induced diabetic rats. J Environ Manage. 2018; 22(6):993-8. https://doi.org/10.4314/jasem.v22i6.25
Rashid VPM. Evaluation of anti diabetic activity of ethanolic root extract of Premna Corymbosa Rottl. against streptozotocin and nicotinamide in diabetic rats (Doctoral dissertation, Nandha College of Pharmacy, Erode).
Yumna M, Arbianti R, Utami TS, Hermansyah H. Effect of mother-in-law’s tongue leaves (Sansevieria trifasciata) extract’s solvent polarity on anti-diabetic activity through in vitro α-glucosidase enzyme inhibition test. E3S Web of Conf. 2018; 67:03003). EDP Sciences. https://doi.org/10.1051/e3sconf/20186703003
Mishra SB, Simon M, Mukerjee A, Rani S, Parashar T. Phytochemical investigation and antidiabetic activity of Oroxylum indicum Vent. Seed. Int Conf on New Horizons in Green Chem Tech. 2018. https://doi.org/10.2139/ssrn.3298676
Srujana M, Ramesh R, Nanjaiah LD. Antidiabetic potential of active fraction obtained from methanolic extract of Ichnocarpus frutescens: A possible herbal remedy. Indian J Pharmacol. 2018; 50(5). https://doi.org/10.4103/ijp.IJP_24_18 PMid:30636828 PMCid:PMC6302691
Tripathy B, Satyanarayana S, Khan KA, Raja K. A comparative study on antidiabetic effects of ethanol extract of Origanum majorana and Indigofera Linnaei Ali on streptozotocin induced diabetic rats. Am J PharmTech Res. 2018; 8:167-78. https://doi.org/10.46624/ajptr.2018.v8.i1.011
Islam G, Gahlot K. Assessment of antidiabetic potencial of Leucas cephalotes spreng extract in alloxan induced laboratory animals. J Drug Deliv Ther. 2018; 8(3):109-15. https://doi.org/10.22270/jddt.v8i3.1715
Zhang X, Jin Y, Wu Y, Zhang C, Jin D, Zheng Q, et al. Anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from barks of Litsea glutinosa in ob/ob mice. Sci Rep. 2018; 8(1). https://doi.org/10.1038/s41598-018-30823-w PMid:30140027 PMCid:PMC6107583
Dogar R, Yadav SK, Nagori BP, Mathur K, Goyal M. Hypoglycaemic effect of Luffa echinata in alloxan induced diabetic rats. Ind J Drug. 2018; 6(4):201-17.
Karikalan G, Rajangam U. Effect of Marsilea quadrifolia (L.) on carbohydrate metabolic enzymes in alloxan induced diabetic rats. Int J Pharm Investig. 2018; 48:477-86. https://doi.org/10.1007/s40005-017-0347-3
Shetty P, Pushpa VH. Evaluation of the oral hypoglycemic activity of methanolic extract of Garcinia indica seeds in streptozotocin induced diabetic Albino rats. Int J Basic. 2018; 7(1147):2319-3003. https://doi.org/10.18203/2319-2003.ijbcp20182097
Kant S. Pharmacological evaluation of antidiabetic and antihyperlipidemic activity of Chenopodium album root extract in male Wistar albino rat models. Int J Green Pharm. 2018; 12(02).
Rao PS, Farheen M, Diwan PV. Alloxan induced diabetes and impairment of oxidative defense system in rat pancreas: Protective effect of Actinopteris dichotoma. J Ayurveda Integr Med. 2018; 12. https://doi.org/10.18535/ijahm/v8i1.08
Negi A, Rawat A. Antihyperglycemic activity of root extracts of Abroma augusta Linn. on experimentally induced diabetic rats. Int J Pharm Sci Rev Res. 2018; 10(2):79-83.
Tang T, Duan X, Ke Y, Zhang L, Shen Y, Hu B, et al. Antidiabetic activities of polysaccharides from Anoectochilus roxburghii and Anoectochilus formosanus in STZ-induced diabetic mice. Int J Biol Macromol. 2018; 112:882-8. https://doi.org/10.1016/j.ijbiomac.2018.02.042 PMid:29438753
Akhtar N, Akram M, Daniyal M, Ahmad S. Evaluation of antidiabetic activity of Ipomoea batatas L. extract in alloxan-induced diabetic rats. Int J Immunopathol Pharmacol. 2018; 32. https://doi.org/10.1177/2058738418814678 PMid:30477357 PMCid:PMC6259064
Ardiana L, Sauriasari R, Elya B. Antidiabetic activity studies of white tea (Camellia sinensis (L.) O. Kuntze) ethanolic extracts in streptozotocin-nicotinamide induced diabetic rats. Phar J. 2018; 10(1). https://doi.org/10.5530/pj.2018.1.31
Devi MR, Ramesh B. Hypoglycemic activity of Leaves of Bougainvillea spectabilis extract in streptozotocin-induced diabetic rats. Asian J Pharm Clin Res. 2018; 8(2):99-103. https://doi.org/10.5958/2231-5691.2018.00017.5
Soetoko AS, Safitri AH, Isradji I, Wibowo KA, Nandira A, Rafiq DZ, et al. Antidiabetic Effect of Inulin from Dioscorea esculenta in streptozotocin-induced diabetic rats. J Health Sci Med Res. 2018; 3(3):953-7.
Ibrahim DS, Abd El-Maksoud MA. Antioxidant and antidiabetic activities of Cucumis melo var. flexuosus leaf extract. Indian J Physiol Pharmacol. 2018; 62(4):445-52.
Trilochana Y, Babu DJ, Rao PR. The study of anti-diabetic activity of aqueous extract of root of Gynandropsis gynandra in diabetic rats. Ind J Res Phar Biotech. 2017; 5(1):13.
Reddy SH, Al-Rawahi AS, Al-Kalbani AS. Hypoglycemic effect of black cumin (Nigella sativa) seed and Senna alexandria (Cassia angustifolia) leaf extracts on alloxan-induced mice. J Herbs Spices Med Plants. 2017; 23(4):401-8. https://doi.org/10.1080/10496475.2017.1352552
Alam P, Shahzad N, Gupta AK, Mahfoz AM, Bamagous GA, Al-Ghamdi SS, et al. Anti-diabetic effect of Boerhavia diffusa L. root extract via free radical scavenging and antioxidant mechanism. J Toxicol Environ Health Sci. 2018; 10:220-7. https://doi.org/10.1007/s13530-018-0367-z
Banerjee A, Maji B, Mukherjee S, Chaudhuri K, Seal T. In vitro anti-diabetic and anti-oxidant activities of ethanol extract of Tinospora sinensis. Int J Curr Pharm Res. 2017; 9(2):42-7. https://doi.org/10.22159/ijcpr.2017v9i2.17379
Kumar S, Patial V, Soni S, Sharma S, Pratap K, Kumar D, et al. Picrorhiza kurroa enhances β-cell mass proliferation and insulin secretion in streptozotocin evoked β-cell damage in rats. Front Pharmacol. 2017; 8. https://doi.org/10.3389/fphar.2017.00537 PMid:28878669 PMCid:PMC5572391
Akhtar K, Shah SW, Shah AA, Shoaib M, Haleem SK, Sultana N. Pharmacological effect of Rubus ulmifolius Schott as antihyperglycemic and antihyperlipidemic on streptozotocin (STZ)-induced albino mice. J Appl Biol Chem. 2017; 60:411-8. https://doi.org/10.1007/s13765-017-0293-9
Menezes CD, Garcia FAd, Viana GSd, Pinheiro PG, Felipe CF, de Albuquerque TR, et al. Murraya paniculata (L.) (Orange Jasmine): Potential nutraceuticals with ameliorative effect in alloxan‐induced diabetic rats. Phy Res. 2017; 31(11):1747-56. https://doi.org/10.1002/ptr.5903 PMid:28840616
Ali MY, Paul S, Tanvir EM, Hossen MS, Rumpa NE, Saha M, Bhoumik NC, Islam A, Hossain MS, Alam N, Gan SH. Antihyperglycemic, antidiabetic, and antioxidant effects of Garcinia pedunculata in rats. Evidence-based Complementary and Alternative Medicine (eCAM). 2017. https://doi.org/10.1155/2017/2979760
Mushtaq A. Anti-diabetic and anti-hyperlipidemic action of aqueous ethanolic extracts of Mentha spicata (leaves), Plumeria alba (leaves) and Nymphaea alba (flowers and rhizomes). Int J Biol Pharm Allied Sci 2017; 6:108-24.
Malapermal V, Botha I, Krishna SB, Mbatha JN. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci. 2017; 24(6):1294-305. https://doi.org/10.1016/j.sjbs.2015.06.026 PMid:28855825 PMCid:PMC5562380
Okoduwa SI, Umar IA, James DB, Inuwa HM. Anti-diabetic potential of Ocimum gratissimum leaf fractions in fortified diet-fed streptozotocin treated rat model of type-2 diabetes. Medicines. 2017; 4(4). https://doi.org/10.3390/medicines4040073 PMid:29019956 PMCid:PMC5750597
Ghaffar M. Anti-diabetic and hypolipidemic effects of extract from the seed of Gossypium herbaceum L. in alloxan-induced diabetic rabbits. Pak J Pharm Sci. 2017; 30(1):75-87.
Lin WS, Lo JH, Yang JH, Wang HW, Fan SZ, Yen JH, et al. Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice. J Ethnopharmacol. 2017; 207:211-9. https://doi.org/10.1016/j.jep.2017.06.044 PMid:28666833
Seifu D, Gustafsson LE, Chawla R, Genet S, Debella A, Holst M, et al. Antidiabetic and gastric emptying inhibitory effect of herbal Melia azedarach leaf extract in rodent models of diabetes type 2 mellitus. J Exp Pharmacol. 2017: 23-9. https://doi.org/10.2147/JEP.S126146 PMid:28360538 PMCid:PMC5365323
Bayani M, Ahmadi-Hamedani M, Javan AJ. Study of hypoglycemic, hypocholesterolemic and antioxidant activities of Iranian Mentha spicata leaves aqueous extract in diabetic rats. Iran J Pharm Res. 2017; 16(Suppl).
Yupparach P, Konsue A. Hypoglycemic and hypolipidemic activities of ethanolic extract from Mimosa pudica L. in normal and streptozotocin-induced diabetic rats. J Pharmacognos. 2017; 9(6). https://doi.org/10.5530/pj.2017.6.130
Ali MY, Paul S, Tanvir EM, Hossen MS, Rumpa NE, Saha M, et al. Antihyperglycemic, antidiabetic, and antioxidant effects of Garcinia pedunculata in rats. Evid Based Complement Alternat Med. 2017; 2017. https://doi.org/10.1155/2017/2979760 PMid:29234381 PMCid:PMC5672145
Fatima K, Abbulu K. Antidiabetic and antihyperlipidemic activity of Chonemorpha fragrans and Erythroxylum monogynum combined ethanolic leaf extract in alloxan induced diabetic Wistar rats. Int J Pharm Sci Rev Res. 2017; 7(01):18-24.
Shang X, Zhu ZY, Wang F, Liu JC, Liu JY, Xie ML. Hypoglycemic effect of Chrysanthemum morifolium extract on alloxan-induced diabetic mice is associated with peroxisome proliferator-activated receptor α/γ-mediated hepatic glycogen synthesis. J Appl Biomed. 2017; 15(1):81-6. https://doi.org/10.1016/j.jab.2016.10.001
Sawant SS, Randive VR, Kulkarni SR. Lectins from seeds of Abrus precatorius: Evaluation of antidiabetic and antihyperlipidemic potential in diabetic rats. Asian J Pharm Res. 2017; 7(2):71-80. https://doi.org/10.5958/2231-5691.2017.00013.2
Jangir RN, Jain GC. Evaluation of antidiabetic activity of hydroalcoholic extract of Cassia fistula Linn. pod in streptozotocin-induced diabetic rats. J Pharmacogno. 2017; 9(5). https://doi.org/10.5530/pj.2017.5.95
Rajesh CS, Holla R, Patil V, Anand AS, Prasad KH. Anti-hyperglycemic effect of Swertia chirata root extract on indinavir treated rats. Natl J Physiol Pharm Pharmacol. 2017; 7(6).
Abdallah IZ, Salem I, El-Salam A, Nayrouz AS. Evaluation of antidiabetic and antioxidant activity of Aegle marmelos L. Correa fruit extract in diabetic rats. Egypt J Hosp Med. 2017; 67(2):731-41. https://doi.org/10.12816/0037829
Lahfa FB, Azzi R, Mezouar D, Djaziri R. Hypoglycemic effect of Citrullus colocynthis extracts. Phytotherapie. 2017; 15(2):50-6. https://doi.org/10.1007/s10298-015-0997-4
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Int Dia Fed Dia Atlas Dia Res Clin Pract. 2019; 157. https://doi.org/10.1016/j.diabres.2019.107843 PMid:31518657
Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018. https://doi.org/10.1155/2018/3086167 PMid:29713648 PMCid:PMC5866895
Venugopal D, Dhanasekaran S. Bitter gourd (Momordica charantia) as an emerging therapeutic agent: Modulating metabolic regulation and cell signaling cascade. J Nat Prod. 2020; 67:221-68. https://doi.org/10.1016/B978-0-12-819483-6.00007-2