Protective Effects of Herbal Agents Against Hepatorenal Toxicity: A Review

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, G. B. Nagar, Greater Noida – 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, G. B. Nagar, Greater Noida – 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, G. B. Nagar, Greater Noida – 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, G. B. Nagar, Greater Noida – 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology, 19 Knowledge Park II, Institutional Area, Greater Noida - 201306, Uttar Pradesh ,IN
  • School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144001, Punjab ,IN

DOI:

https://doi.org/10.18311/jnr/2024/43880

Keywords:

Cirrhosis, Hepatorenal Toxicity, Inflammatory Response, Oxidative Stress, Pathophysiology, Phytochemicals

Abstract

Hepatorenal toxicity, characterised by damage to the liver and kidneys due to toxins, chemicals or drugs, poses a significant threat to human health. The intricate metabolic and pathophysiological connection between these vital organs underscores the urgency of effective therapeutic strategies. This article reviews various herbal interventions with their potential hepatorenal protective effects. The discussion encompasses diverse plants, each possessing unique bioactive compounds and mechanisms of action in hepatorenal toxicity. This article focuses on 14 entities including Rheum turkestanicum, Curcuma longa, Olea europaea, Euryops arabicus, Taraxacum syriacum, Andrographis paniculata, Grape seed oil, Bridelia ferruginea, Cynara scolymus, Phyllanthus amarus, Schisandra chinensis, Garcinia kola Heckle, Cyperus laevigatus and Alchemilla vulgaris. These are examined for their potential to mitigate hepatorenal toxicity. Antioxidant and anti-inflammatory activities contribute to the hepatorenal protective effects of these plants. This article also explores the combination of N-Acetyl Cysteine (NAC) with plants such as Lycopene, Curcumin and Taurine, emphasising synergistic effects in ameliorating toxic insults to the liver and kidneys. Therefore, these findings underscore the potential of plant-based interventions as promising candidates for therapeutic strategies against hepatorenal toxicity, offering a holistic approach by mitigating oxidative stress and inflammatory responses in these vital organs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-08-31

How to Cite

Siddiqui, A., Bansal, P., Pentela, B., Mazumder, A., Tyagi, P. K., & Kapoor, B. (2024). Protective Effects of Herbal Agents Against Hepatorenal Toxicity: A Review. Journal of Natural Remedies, 24(8), 1621–1632. https://doi.org/10.18311/jnr/2024/43880

Issue

Section

Review Articles

Categories

Received 2024-05-05
Accepted 2024-07-18
Published 2024-08-31

 

References

Güvenç M, Cellat M, Gökçek İ, Özkan H, Arkalı G, Yakan A, Yurdagül Özsoy Ş, Aksakal M. Nobiletin attenuates acetaminophen‐induced hepatorenal toxicity in rats. J Biochem Mol Toxicol. 2020; 34(2):22427. https://doi.org/10.1002/jbt.22427 PMid:31777137

Ijaz M, Arshad A, Awan MA, Tariq MR, Ali SW, Ali S, Shafiq M, Ahmed S, Sheas MN, Iftikhar M, Ahmed S. Exploring the potential of curry leaves on mercury‐induced hepatorenal toxicity in an animal model. Food Sci Nutr. 2022; 10(2):499-506. https://doi.org/10.1002/fsn3.2683 PMid:35154686 PMCid: PMC8825737

Othman MS, Safwat G, Aboulkhair M, Moneim AE. The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem Toxicol. 2014; 69:175-81. https://doi.org/10.1016/j.fct.2014.04.012 PMid:24751971

Ahmad A, Abuzinadah MF, Alkreathy HM, Kutbi HI, Shaik NA, Ahmad V, Saleem S, Husain A. A novel polyherbal formulation containing thymoquinone attenuates carbon tetrachloride-induced hepatorenal injury in a rat model. Asian Pac J Trop Biomed. 2020; 10(4):147-55. https://doi.org/10.4103/2221-1691.280292

Buccheri S, Da BL. Hepatorenal syndrome: Definitions, diagnosis and management. Clin Liver Dis. 2022; 26(2):181-201. https://doi.org/10.1016/j.cld.2022.01.002 PMid:35487604.

Azab AE, Albasha MO. Hepatoprotective effect of some medicinal plants and herbs against hepatic disorders induced by hepatotoxic agents. J Biotechnol Bioeng. 2018; 2(1):8-23. https://doi.org/10.22259/2637-5362.0201002

Özcan MM, Matthäus B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol. 2017; 243:89-99. https://doi.org/10.1007/s00217016-2726-9

Oloya B, Namukobe J, Ssengooba W, Afayoa M, Byamukama R. Phytochemical screening, antimycobacterial activity and acute toxicity of crude extracts of selected medicinal plant species used locally in the treatment of tuberculosis in Uganda. Trop Med Health. 2022; 50(1):16. https://doi.org/10.1186/ s41182-022-00406-7 PMid:35177126 PMCid:PMC8851836.

Gulati K, Reshi MR, Rai N, Ray A. Hepatotoxicity: Its mechanisms, experimental evaluation and protective strategies. Am J Pharmacol. 2018; 1(1):1004. https://doi.org/10.22259/2637-3048.0101004

Au JS, Navarro VJ, Rossi S. Drug-induced liver injury-its pathophysiology and evolving diagnostic tools. Aliment Pharmacol Ther. 2011; 34(1):11-20. https://doi.org/10.1111/ j.1365-2036.2011.04674.x PMid:21539586.

Al-Naimi MS, Rasheed HA, Hussien NR, Al-Kuraishy HM, Al-Gareeb AI. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res. 2019; 10(3):95-9. https:// doi.org/10.4103/japtr.JAPTR_336_18 PMid:31334089 PMCid:PMC6621352.

Jahani Yazdi A, Javanshir S, Soukhtanloo M, Jalili-Nik M, Jafarian AH, Iranshahi M, Hasanpour M, Khatami SM, Hosseini A, Amiri MS, Ghorbani A. Acute and subacute toxicity evaluation of the root extract of Rheum turkestanicum Janisch. Drug Chem Toxicol. 2020; 43(6):609-15. https://doi.org/10.1080/01480545.2018.156 1713 PMid:31264488.

Hosseini A, Rajabian A, Fanoudi S, Farzadnia M, Boroushaki MT. Protective effect of Rheum turkestanicum root against mercuric chloride-induced hepatorenal toxicity in rats. Avicenna J Phytomed. 2018; 8(6):488-97. https://doi.org/10.22038/ajp.2018.29651.2034

Kyung EJ, Kim HB, Hwang ES, Lee S, Choi BK, Kim JW, Kim HJ, Lim SM, Kwon OI, Woo EJ. Evaluation of the hepatoprotective effect of curcumin on liver cirrhosis using a combination of biochemical analysis and magnetic resonancebased electrical conductivity imaging. Mediators Inflamm. 2018; (1):5491797. https://doi.org/10.1155/2018/5491797 PMid:29887757 PMCid:PMC5985075.

Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano copper oxide-mediated toxicity in rats: Behavioural performance, antioxidant, anti-inflammatory, apoptosis and histopathology. Life Sci. 2022; 292:120296. https://doi.org/10.1016/j.lfs.2021.120296 PMid:35045342.

Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TY, Abdul Rahim E, Abu Bakar Zakaria MZ. Ameliorative effect of curcumin on lead‐induced haematological and hepatorenal toxicity in a rat model. J Biochem Mol Toxicol. 2020; 34(6):22483. https://doi.org/10.1002/jbt.22483 PMid:32125074.

Ibrahim DA, Halboup A, Al Ashwal M, Shamsher A. Ameliorative effect of Olea europaea Leaf Extract on Cisplatin‐ Induced Nephrotoxicity in the Rat Model. Int J Nephrol. 2023; (1):2074498. https://doi.org/10.1155/2023/2074498 PMid:37497380 PMCid: PMC10368505.

Abugomaa A, Elbadawy M. Olive leaf extract modulates glycerol-induced kidney and liver damage in rats. Environ Sci Pollut Res. 2020; 27(17):22100-11. https://doi.org/10.1007/s11356-020-08371-6 PMid:32291641.

Abbass MT, Abed RM. The effect of olive oil (Olea europaea) on ibuprofen-induced hepatotoxicity in female rats. Karbala J Pharm Sci. 2017; 1(13):178-87.

Maalej A, Mahmoudi A, Bouallagui Z, Fki I, Marrekchi R, Sayadi S. Olive phenolic compounds attenuate deltamethrininduced liver and kidney toxicity through regulating oxidative stress, inflammation and apoptosis. Food Chem Toxicol. 2017; 106:455-65. https://doi.org/10.1016/j.fct.2017.06.010 PMid:28595958.

Abdel-Lateff A, Abdel-Naim AB, Alarif WM, Algandaby MM, Alburae NA, Alghamdi AM, Nasrullah MZ, Fahmy UA. [Retracted] Euryops arabicus promotes healing of excised wounds in rat skin: Emphasis on its collagenenhancing, antioxidant, and anti‐inflammatory activities. Oxid Med Cell Longev. 2021; (1):8891445. https://doi.org/10.1155/2021/8891445 PMid:33574987 PMCid: PMC7857909.

Hafez EM, Paulis MG, Ahmed MA, Fathy MN, Abdel-Lateff A, Algandaby M. Protective and antioxidant activity of the Euryops arabicus against paracetamol-induced hepatorenal toxicity in rats. J Clin Toxicol. 2015; 5(1):1-6. https://doi.org/10.4172/2161-0495.1000227

Alarif WM, Abdel-Lateff A, Al-Abd AM, Basaif SA, Badria FA, Shams M, Ayyad SE. Selective cytotoxic effects on human breast carcinoma of new methoxylated flavonoids from Euryops arabicus grown in Saudi Arabia. Eur J Med Chem. 2013; 66:204-10. https://doi.org/10.1016/j.ejmech.2013.05.025 PMid:23800391.

Eshrati R, Jafari M, Gudarzi S, Nazari A, Samizadeh E, Ghafourian Hesami M. Comparison of ameliorative effects of Taraxacum syriacum and N-acetylcysteine against acetaminophen-induced oxidative stress in rat liver and kidney. J Biochem. 2021; 169(3):337-50. https://doi.org/10.1093/jb/mvaa107 PMid:32970799.

Nazari A, Fanaei H, Dehpour A, Hassanzadeh GH, Jafari M, Salehi M, Mohammadi M. Chemical composition and hepatoprotective activity of ethanolic root extract of Taraxacum Syriacum Boiss against acetaminophen intoxication in rats. Bratisl Med J. 2015; 116(1):41-6. https:// doi.org/10.4149/BLL_2015_008 PMid:25666961.

Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: curcumin to the rescue? J Hazard Mater. 2020; 400:123160. https://doi.org/10.1016/j.jhazmat.2020.123160 PMid:32574880.

Owoade AO, Alausa AO, Adetutu A, Olorunnisola OS, Owoade AW. Phytochemical characterisation and antioxidant bioactivity of Andrographis paniculata (Nees). Pan Afr J Life Sci. 2021; 5(2):246-56. https://doi.org/10.36108/pajols/1202.50.0220

Ghorbanpour M, Hadian J, Nikabadi S, Varma A. Importance of medicinal and aromatic plants in human life. Med Plants Environ Challenges. 2017; 1-23. https://doi.org/10.1007/978-3-319-68717-9_1

Owoade AO, Alausa AO, Adetutu A, Owoade AW. Protective effects of methanolic extract of Andrographis paniculata (Burm. f.) Nees leaves against arsenic-induced damage in rats. Bull Natl Res Cent. 2022; 46(1):141. https:// doi.org/10.1186/s42269-022-00832-x

Arslan G, Sönmez AY, Yan? k T. Effects of grape Vitis vinifera seed oil supplementation on growth, survival, fatty acid profiles, antioxidant contents and blood parameters in rainbow trout Oncorhynchus mykiss. Aquac Res. 2018; 49(6):2256-66. https://doi.org/10.1111/are.13686

Garavaglia J, Markoski MM, Oliveira A, Marcadenti A. Grape seed oil compounds: Biological and chemical actions for health. Nutr Metab Insights. 2016; 9. https:// doi.org/10.4137/NMI.S32910 PMid:27559299 PMCid: PMC4988453.

Al-Attar MS. Antimutagenic effect of grape seed extracted oil on diazinon induced genotoxicity in albino mice. Iraqi J Cancer Med Genet. 2017; 10(1):56-62. https://doi.org/10.29409/ijcmg.v10i1.202

Ahmed SA, Shawky AA, Abdellatefe AE, Abdelraouf AE, Abd-Elreheem EM, Nasr BO, Refat AS, Ashraf MA, Magdy AS, Ahmed EE, Ali EM. Protective effects of vitamin E and grape seed oil against acute hepatorenal ivermectin toxicity in mice: biochemical and histopathological studies. GSC Biol Pharm Sci. 2019; 7(2):87-94. https://doi.org/10.30574/ gscbps.2019.7.2.0079

Oyebode OA, Erukainure OL, Chuturgoon AA, Ghazi T, Naidoo P, Chukwuma CI, Islam MS. Bridelia ferruginea Benth. (Euphorbiaceae) mitigates oxidative imbalance and lipotoxicity, with concomitant modulation of insulin signalling pathways via GLUT4 upregulation in hepatic tissues of diabetic rats. J Ethnopharmacol. 2022; 284:114816. https://doi.org/10.1016/j.jep.2021.114816 PMid:34763044.

Oloyede OI, Afolabi OB, Babatunde OE, Adegboro AG, Ogunkorode DO. Cytoprotective potential of the aqueous extract from Bridelia ferruginea stem bark against experimental cadmium-induced hepato-renal toxicity in Wistar rat. Comp Clin Pathol. 2022; 31(6):967-78. https:// doi.org/10.1007/s00580-022-03399-1

El-Boshy M, Ashshi A, Gaith M, Qusty N, Bokhary T, Al Taweel N, Abdelhady M. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage and immunosuppressive and haematological disorders in rats. Environ Sci Pollut Res. 2017; 24:12372-83. https://doi.org/10.1007/s11356-017-8876-x PMid:28357802.

Lombardo S, Restuccia C, Pandino G, Licciardello F, Muratore G, Mauromicale G. Influence of an O3atmosphere storage on microbial growth and antioxidant contents of globe artichoke as affected by genotype and harvest time. Innov Food Sci Emerg Technol. 2015; 27:1218. https://doi.org/10.1016/j.ifset.2014.12.007

Sowjanya K, Girish C, Bammigatti C, Lakshmi NC. Efficacy of Phyllanthus niruri on improving liver functions in patients with alcoholic hepatitis: A double-blind randomised controlled trial. Indian J Pharmacol. 202; 53(6):448-56. https://doi.org/10.4103/ijp.IJP_540_20 PMid:34975132 PMCid: PMC8764976.

Olabiyi AA, Ojo OA, Ajayi BO, et al. Hepatoprotective and nephroprotective effects of Phyllanthus amarus extract against streptozotocin-induced damage in male Wistar rats. J Nat Remedies. 2020; 20(4):123-34.

Mai NT, Doan VV, Lan HT, Anh BT, Hoang NH, Tai BH, Nhiem NX, Yen PH, Park SJ, Seo Y, Namkung W. Chemical constituents from Schisandra sphenanthera and their cytotoxic activity. Nat Prod Res. 2021; 35(20):3360-9. https:// doi.org/10.1080/14786419.2019.1700247 PMid:31829042.

Li X, Yang H, Xiao J, Zhang J, Zhang J, Liu M, Zheng Y, Ma L. Network pharmacology-based investigation into the bioactive compounds and molecular mechanisms of Schisandrae Chinensis fructus against drug-induced liver injury. Bioorg Chem. 2020; 96:103553. https://doi.org/10.1016/j.bioorg.2019.103553 PMid:31978688

Kang JS, Han MH, Kim GY, Kim CM, Kim BW, Hwang HJ, Choi YH. Nrf2-mediated HO-1 induction contributes to the antioxidant capacity of a Schisandrae fructus ethanol extract in C2C12 myoblasts. Nutrients. 2014; 6(12):5667-78. https://doi.org/10.3390/nu6125667 PMid:25493944 PMCid: PMC4276991.

Chen Q, Zhan Q, Li Y, Sun S, Zhao L, Zhang H, Zhang G. Schisandra lignan extract protects against carbon tetrachloride‐induced liver injury in mice by inhibiting oxidative stress and regulating the NF‐κB and JNK signalling pathways. Evid Based Complement Alternat Med. 2017; (1):5140297. https://doi.org/10.1155/2017/5140297 PMid:28246539 PMCid: PMC5299172.

Wei Y, Luo Z, Zhou K, Wu Q, Xiao W, Yu Y, Li T. Schisandrae chinensis fructus extract protects against hepatorenal toxicity and changes metabolic ions in cyclosporine A rats. Nat Prod Res. 2021; 35(17):2915-20. https://doi.org/10.108 0/14786419.2019.1672688 PMid:31588792.

Adaramoye OA, Azeez AF, Ola-Davies OE. Ameliorative effects of chloroform fraction of Cocos nucifera L. husk fibre against Cisplatin-induced toxicity in rats. Pharmacogn Res. 2016; 8(2):89. https://doi.org/10.4103/0974-8490.172658 PMid:27034598 PMCid: PMC4780144.

Khurshid R, Ullah MA, Tungmunnithum D, Drouet S, Shah M, Zaeem A, Hameed S, Hano C, Abbasi BH. Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. PLoS One. 2020; 15(6):0233963. https:// doi.org/10.1371/journal.pone.0233963 PMid:32530961 PMCid:PMC7292357.

Folayan A, Akani E, Adebayo OA, Akanni OO, Owumi SE, Tijani AS, Adaramoye OA. Ameliorative effects of hexane extract of Garcinia kola seeds Heckel (Clusiaceae) in cisplatin-induced hepatorenal toxicity in mice. Drug Chem Toxicol. 2022; 45(3):1098-108. https://doi.org/10.1080/0148 0545.2020.1808671 PMid:32811196.

Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, Choudhury MD. Role of natural phenolics in hepatoprotection: a mechanistic review and analysis of regulatory network of associated genes. Front Pharmacol. 2019; 10:509. https://doi.org/10.3389/fphar.2019.00509 PMid:31178720 PMCid:PMC6543890.

Seydi E, Salimi A, Rasekh HR, Mohsenifar Z, Pourahmad J. Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from a rat model of hepatocellular carcinoma: Involvement of ROS-mediated mitochondrial targeting. Nutr Cancer. 2018; 70(4):594-604. https://doi.org/ 10.1080/01635581.2018.1460679 PMid:29693446.

Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review. Crit Rev Food Sci Nutr. 2019; 59(13):2125-35. https://doi.or g/10.1080/10408398.2018.1439880 PMid:29432040.

Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas-Tendero P, Paredes MD, Atucha NM, García-Estañ J. Flavonoids in kidney health and disease. Front Physiol. 2018; 9:394. https://doi.org/10.3389/fphys.2018.00394 PMid:29740333 PMCid: PMC5928447.

Elshamy AI, Farrag AR, Ayoub IM, Mahdy KA, Taher RF, Gendy AE, Mohamed TA, Al-Rejaie SS, Ei-Amier YA, Abd-EIGawad AM, Farag MA. UPLC-qTOF-MS phytochemical profile and antiulcer potential of Cyperus conglomeratus Rottb. alcoholic extract. Molecules. 2020; 25(18):4234. https://doi.org/10.3390/molecules25184234 PMid:32942704 PMCid:PMC7570889.

Ayoub IM, El-Baset MA, Elghonemy MM, Bashandy SA, Ibrahim FA, Ahmed-Farid OA, El Gendy AE, Afifi SM, Esatbeyoglu T, Farrag AR, Farag MA. Chemical profile of Cyperus laevigatus and its protective effects against thioacetamide-induced hepatorenal toxicity in rats. Molecules. 2022; 27(19):6470. https://doi.org/10.3390/ molecules27196470 PMid:36235007 PMCid:PMC9573427.

Boroja T, Mihailović V, Katanić J, Pan SP, Nikles S, Imbimbo P, Monti DM, Stanković N, Stanković MS, Bauer R. The biological activities of roots and aerial parts of Alchemilla vulgaris L. S Afr J Bot. 2018; 116:175-84. https://doi.org/10.1016/j.sajb.2018.03.007

Jurić T, Stanković JS, Rosić G, Selaković D, Joksimović J, Mišić D, Stanković V, Mihailović V. Protective effects of Alchemilla vulgaris L. extracts against cisplatin-induced toxicological alterations in rats. S Afr J Bot. 2020; 128:14151. https://doi.org/10.1016/j.sajb.2019.09.010

Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018; 52(7):751-62. https://doi.org/10.1080/10715762.2018 .1468564 PMid:29742938.

Shimizu MH, Gois PH, Volpini RA, Canale D, Luchi WM, Froeder L, Pfeferman Heilberg I, Seguro AC. N-acetylcysteine protects against star fruit-induced acute kidney injury. Ren Fail. 2017; 39(1):193-202. https://doi.org/10.1080/088602 2X.2016.1256315 PMid:27845599 PMCid:PMC6014349.

Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj. 2013; 1830(8):4117-29. https://doi.org/10.1016/j.bbagen.2013.04.016 PMid:23618697.

Owumi S, Bello T, Oyelere AK. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. Environ Toxicol Pharmacol. 2021; 86:103667. https://doi.org/10.1016/j.etap.2021.103667 PMid:33933708.

Friedman M. Anticarcinogenic, cardioprotective and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J Agric Food Chem. 2013; 61(40):9534-50. https://doi.org/10.1021/jf402654e PMid:24079774.

Palabiyik SS, Erkekoglu P, Zeybek ND, Kizilgun M, Baydar DE, Sahin G, Giray BK. Protective effect of lycopene against ochratoxin A-induced renal oxidative stress and apoptosis in rats. Exp Toxicol Pathol. 2013; 65(6):853-61. https://doi.org/10.1016/j.etp.2012.12.004 PMid:23332503.

Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W, Fadl SE, Soliman A, Aboubakr M. Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep. 2021; 11(1):13979. https://doi.org/10.1038/s41598-021-93196-7 PMid:34234176 PMCid: PMC8263713.

Li G, Chen JB, Wang C, Xu Z, Nie H, Qin XY, Chen XM, Gong Q. Curcumin protects against acetaminophen induced apoptosis in hepatic injury. World J Gastroenterol. 2013; 19(42):7440. https://doi.org/10.3748/wjg.v19.i42.7440 PMid:24259976 PMCid: PMC3831227.

Bayomy NA, Elshafey SH, Mosaed MM, Hegazy AM. Protective effect of curcumin versus n-acetylcysteine on acetaminophen-induced hepatotoxicity in adult albino rats. J Cytol Histol S. 2015; 3. https://doi.org/10.4172/2157-7099.S3-018

Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol. 2019; 124:182-91. https://doi.org/10.1016/j.fct.2018.12.002 PMid:30529260.

El-Maddawy ZK, El-Sayed YS. Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal and testicular toxicity in Wistar rats. Environ Sci Pollut Res. 2018; 25:3468-79. https://doi.org/10.1007/s11356-017-0750-3 PMid:29152699.

Kawasaki A, Ono A, Mizuta S, Kamiya M, Takenaga T, Murakami S. The taurine content of Japanese seaweed. Adv Exp Med Biol. 2017; 975:1105-12. https://doi.org/10.1007/978-94-024-1079-2_88 PMid:28849526.

Abdel-Wahab WM, Moussa FI, Saad NA. Synergistic protective effect of N-acetylcysteine and taurine against cisplatin-induced nephrotoxicity in rats. Drug Des Devel Ther. 2017; 20:901-8. https://doi.org/10.2147/DDDT.S131316 PMid:28356716 PMCid: PMC5367759.

Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress. Mol Med Rep. 2021; 24(2):1-9. https://doi.org/10.3892/mmr.2021.12242 PMid:34184084 PMCid: PMC8240184.

Owumi SE, Adeniyi G, Oyelere AK. The modulatory effect of taurine on benzo (a) pyrene-induced hepatorenal toxicity. Toxicol Res. 2021; 10(3):389-98. https://doi.org/10.1093/toxres/tfab016 PMid:34141152 PMCid: PMC8201570.

Most read articles by the same author(s)

1 2 > >>