TEM Analysis and Insights into the Physicomechanical Characteristics of CeLa-Substituted Bio-Glass Ceramics

Jump To References Section

Authors

  • Department of Mechanical Engineering, Swami Vivekananda University, Barrackpore, Kolkata - 700121, West Bengal, India ,IN
  • Department of Mechanical Engineering, Gaya College of Engineering, Gaya - 823003, Bihar ,IN
  • Department of Mechanical Engineering, Swami Vivekananda University, Barrackpore, Kolkata - 700121, West Bengal ,IN
  • Department of Mechanical Engineering, Swami Vivekananda University, Barrackpore, Kolkata - 700121, West Bengal ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45547

Keywords:

Bio-Glass Ceramics, Bone Tissue Engineering, CeLa Substitution, Earth Metals, Mechanical Properties, TEM.

Abstract

Among rare earth metals, bio-glass ceramics have gained significant attention for their potential applications in bone tissue engineering and regenerative medicine due to their biocompatibility and bioactivity. This research paper investigates the physico-mechanical properties of CeLa-substituted bio-glass ceramics using Transmission Electron Microscopy (TEM) analysis. The study aims to elucidate the microstructural features, crystalline phases, and mechanical behavior of CeLasubstituted bio-glass ceramics, providing valuable insights into their suitability for biomedical applications. The TEM analysis reveals intricate details of the material’s nanostructure, highlighting the influence of CeLa substitution on phase composition, grain morphology, and mechanical performance. The findings contribute to a better understanding of the structure-property relationships in CeLa-substituted bio-glass ceramics, guiding the development of advanced biomaterials for bone regeneration and tissue repair.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Ershad, M., Hrishikesh, Mondal, P., & Kumar, R. (2023). TEM Analysis and Insights into the Physicomechanical Characteristics of CeLa-Substituted Bio-Glass Ceramics. Journal of Mines, Metals and Fuels, 71(12B), 91–95. https://doi.org/10.18311/jmmf/2023/45547

Issue

Section

Articles

 

References

Legeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008 Nov; 108(11):4742-53. doi: 10.1021/cr800427g DOI: https://doi.org/10.1021/cr800427g

Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010; 7(Suppl 4):S379-91. https://doi.org/10.1098/rsif.2010.0151.focus PMid:20484227 PMCid:PMC2943892 DOI: https://doi.org/10.1098/rsif.2010.0151.focus

Jung S. Development and characterization of bioactive glasses for bone tissue engineering [PhD dissertation]. Missouri University of Science and Technology; 2010.

Jones JR, Ehrenfried LM, Saravanapavan P, Hench LL. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci Mater Med. 2006; 17(11):989-96. https://doi.org/10.1007/s10856-006-0434-x PMid:17122909 DOI: https://doi.org/10.1007/s10856-006-0434-x

Diba M, Tapia F, Boccaccini AR. Magnesium-Containing Bioactive Glasses for Biomedical Applications. Int J Appl Glass Sci. 2012; 3(3):221-53. https://doi.org/10.1111/j.2041- 1294.2012.00095.x DOI: https://doi.org/10.1111/j.2041-1294.2012.00095.x

Deliormanlı AM. Synthesis and characterization of ceriumand gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015; 26(2):67. https://doi.org/10.1007/s10856-014-5368-0 PMid:25631259 DOI: https://doi.org/10.1007/s10856-014-5368-0

Massera A, Vassallo-Breillot M, Törngren B, Glorieux B, Hupa L. Effect of CeO2 doping on thermal, optical, structural and in vitro properties of a phosphate based bioactive glass. J Non-Cryst Solids. 2014; 402:28-35. https://doi. org/10.1016/j.jnoncrysol.2014.05.006 DOI: https://doi.org/10.1016/j.jnoncrysol.2014.05.006

Rygel JL, Pantano CG. Synthesis and properties of cerium aluminosilicophosphate glasses. J Non-Cryst Solids. 2009; 355(52-54):2622-9. https://doi.org/10.1016/j.jnoncrysol. 2009.09.004 DOI: https://doi.org/10.1016/j.jnoncrysol.2009.09.004

Leonelli C, Lusvardi G, Malavasi G, Menabue L, Tonelli M. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J Non-Cryst Solids. 2003; 316(2- 3):198-216. https://doi.org/10.1016/S0022-3093(02)01628-9 DOI: https://doi.org/10.1016/S0022-3093(02)01628-9

Vyasa VK, Kumar AS, Ali A, Prasada S, Srivastava P, Mallick SP, et al. Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties. Bol Soc Esp Ceram Vidr. 2016; 55(6):228-38. https://doi.org/10.1016/j.bsecv.2016.09.005 DOI: https://doi.org/10.1016/j.bsecv.2016.09.005

El Batal FH, El Kheshen A. Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2-Na2O-CaO-P2O5 and effect of gamma irradiation. Mater Chem Phys. 2008; 110(2-3):352-62. https://doi.org/10.1016/j.matchemphys. 2008.02.011 DOI: https://doi.org/10.1016/j.matchemphys.2008.02.011

Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971; 5(6):117-41. https:// doi.org/10.1002/jbm.820050611 DOI: https://doi.org/10.1002/jbm.820050611

Filgueiras MRT, La Torre G, Hench LL. Solution effects on the surface reactions of a bioactive glass. J Biomed Mater Res. 1993; 27(12):1485-93. https://doi.org/10.1002/ jbm.820271204 PMid:8113235 DOI: https://doi.org/10.1002/jbm.820271204

Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body fluids. Biomaterials. 1998; 46(7):2519- 27. https://doi.org/10.1016/0142-9612(91)90194-F PMid:1878450 DOI: https://doi.org/10.1016/S1359-6454(98)80036-0

Most read articles by the same author(s)

1 2 > >>