Prophylactic Efficacy of Allium sativum Essential Oil on Hepatic Tissues of Mice Model Exposed to Inorganic Lead Salt
DOI:
https://doi.org/10.18311/ti/2023/v30i4/32343Keywords:
Allium sativum Essential Oil (ASEO), Hepatic Biomarkers, Lead Nitrate, Oxidative StressAbstract
Hypothesis: Lead is a pervasive environmental pollutant that is major threat for human health. Allium sativum essential oil could impart possible protection from Lead Nitrate (LN) as it contains organosulfur compounds which possess various pharmacological potential including antioxidant, anti-inflammatory, anticancer, anti-apoptotic and other activities as well. Parameters Studied: The ameliorative role of Allium sativum essential oil on hepatic tissue damage caused by Lead nitrate was evaluated through oxidative stress, biochemical parameters, oxidative Stress Index (OSI) and hepatic biomarkers. Methodology and Results: In this study, six groups of animals were taken. These groups were: control animals, toxicant treated animals (LN), LN + plant oil low and high dose treated animals, LN + silymarin treated animals and LN + vehicle oil control group. Lead nitrate exposure significantly decreased the antioxidant molecules mainly SOD, CAT, Gpx, GSH, GST, TPC and increased the lipid peroxidation content, Oxidative Stress Index (OSI), liver indices, Total Cholesterol Content (TCC) and biochemical parameters [ALT, AST, ALP] In addition to this, Lead nitrate increased the level of hepatic biomarkers such as cytp4502E1, 5’-nucleotidase, and γ-glutamyltranspeptidase and decreased the cytb5 content in hepatic tissues. Conclusion: Antioxidant activity of Allium sativum Essential Oil (ASEO) prevented oxidative stress and restored the level of liver indices, biochemical parameters, and hepatic biomarkers in Lead nitrate-intoxicated mice. Therefore, ASEO can be considered as a promising protective strategy against Lead nitrate-induced hepatotoxicity.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kusum Sharma, Veena Sharma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-30
Published 2023-11-03
References
García-Esquinas E, Pollán M, Umans JG, Francesconi KA, Goessler W, Guallar E, Howard B, Farley J, Best LG, Navas–Acien A, et al. Arsenic exposure and cancer mortality in a US-based prospective cohort: The strong heart study. Cancer Epidemiology, Biomarkers and Prevention. 2013; 22(11):1944-53. PMID: 23800676. PMCID: PMC3843229. https://doi.org/10.1158/1055- 9965.EPI-13-0234-T DOI: https://doi.org/10.1158/1055-9965.EPI-13-0234-T
Jiang N, Wen H, Zhou M, Lei T, Shen J, Zhang D, Wang R, Wu H, Jiang S, Li W, et al. Low-dose combined exposure of carboxylated black carbon and heavy metal lead induced potentiation of oxidative stress, DNA damage, inflammation, and apoptosis in BEAS-2B cells. Ecotoxicology and Environmental Safety. 2020; 206:111388. PMID: 33007543. https://doi.org/10.1016/j. ecoenv.2020.111388 DOI: https://doi.org/10.1016/j.ecoenv.2020.111388
Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH, et al. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environment international. 2018; 120:404-20. PMID: 30125858. https:// doi.org/10.1016/j.envint.2018.08.013 DOI: https://doi.org/10.1016/j.envint.2018.08.013
Kuang CC, Wang Y, Hu PC, Gao FF, Bu L, Wen XM, Xiang QM, Song H, Li Q, Wei L, Li K, et al. Ritonavirinduced hepatotoxicity and ultrastructural changes of hepatocytes. Ultrastructural Pathology. 2014; 38(5):329- 34. PMID: 25079492. https://doi.org/10.3109/01913123. 2014.914114 DOI: https://doi.org/10.3109/01913123.2014.914114
Chiang J. Liver physiology: Metabolism and detoxification. in pathobiology of human disease. Academic Press: Oxford, UK; 2014. p. 1770–1782. https://doi. org/10.1016/B978-0-12-386456-7.04202-7 DOI: https://doi.org/10.1016/B978-0-12-386456-7.04202-7
Eldutar E, Kandemir FM, Kucukler S, Caglayan C. Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol‐induced hepatotoxicity in rats: An experimental and biochemical study. Journal of Biochemical and Molecular Toxicology. 2017; 31(11):e21960. PMID: 28682524. https://doi.org/10.1002/jbt.21960 DOI: https://doi.org/10.1002/jbt.21960
Hemmaphan S, Bordeeratb NK. Reduced DNA glycosylases expression and oxidative DNA damage induced by lead. Toxicology International. 2022; 29(3):321-8. https://doi.org/10.18311/ti/2022/v29i3/29322. DOI: https://doi.org/10.18311/ti/2022/v29i3/29322
Morales-González JA, Madrigal-Bujaidar E, Sánchez- Gutiérrez M, Izquierdo-Vega JA, Valadez-Vega MD, Álvarez-González I, Morales-González Á, Madrigal- Santillán E, et al. Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods. 2019; 8(8):343. PMCID:PMC6722787. PMID: 31412555. https://doi. org/10.3390/foods8080343. DOI: https://doi.org/10.3390/foods8080343
El-Saber Batiha G, MagdyBeshbishy A. Wasef LG, Elewa YH, Al-Sagan AA, El-Hack A, Mohamed E, Taha AE, Abd-Elhakim YM, Prasad Devkota H, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020; 12(3):872. PMCID: PMC7146530. PMID: 32213941. https://doi. org/10.3390/nu12030872 DOI: https://doi.org/10.3390/nu12030872
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Archives of Toxicology. 2016; 90:39-79. PMID: 26377694. https://doi. org/10.1007/s00204-015-1580-z DOI: https://doi.org/10.1007/s00204-015-1580-z
Satyal P, Craft JD, Dosoky NS, Setzer WN. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods. 2017; 6(8):63. PMID: 28783070. PMCID: PMC5575638. https://doi.org/10.3390/foods6080063 DOI: https://doi.org/10.3390/foods6080063
Zeng T, Guo FF, Zhang CL, Zhao S, Dou DD, Gao XC, Xie KQ, et al. The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice. Chemico-Biological Interactions. 2008; 176(2-3):234-42. PMID: 18718457. https://doi.org/10.1016/j.cbi.2008.07.004 DOI: https://doi.org/10.1016/j.cbi.2008.07.004
Aldahmash BA, El-Nagar DM. Antioxidant effects of captopril against lead acetate-induced hepatic and splenic tissue toxicity in Swiss albino mice. Saudi Journal of Biological Sciences. 2016; 23(6):667-73. PMID: 27872561. PMCID: PMC5109491. https://doi. org/10.1016/j.sjbs.2016.05.005 DOI: https://doi.org/10.1016/j.sjbs.2016.05.005
Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S. Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Archives of Toxicology. 2011; 85:327-35. PMID: 20859737. https:// doi.org/10.1007/s00204-010-0588-7 DOI: https://doi.org/10.1007/s00204-010-0588-7
Li X. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. Journal of Agricultural and Food Chemistry. 2012; 60(25):6418-24. PMID: 22656066. https://doi.org/10.1021/jf204970r DOI: https://doi.org/10.1021/jf204970r
Aebi H. Catalase in vitro. InMethods in Enzymology 1984; 105:121-6. PMID: 6727660. https://doi. org/10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979; 95(2):351-8. PMID: 36810. https:// doi.org/10.1016/0003-2697(79)90738-3 DOI: https://doi.org/10.1016/0003-2697(79)90738-3
Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione- related enzymes in rabbit kidney: Possible implications in analgesic nephropathy. Biochemical Pharmacology. 1984; 33(11):1801-7. PMID: 6145422. https://doi.org/10.1016/0006-2952(84)90353-8 DOI: https://doi.org/10.1016/0006-2952(84)90353-8
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974; 249(22):7130-9. PMID: 4436300. https://doi. org/10.1016/S0021-9258(19)42083-8 DOI: https://doi.org/10.1016/S0021-9258(19)42083-8
Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959; 82(1):70-7. PMID: 13650640. https://doi.org/10.1016/0003-9861(59)90090-6 DOI: https://doi.org/10.1016/0003-9861(59)90090-6
Baltacıoğlu E, Yuva P, Aydın G, Alver A, Kahraman C, Karabulut E, Akalın FA, et al. Lipid peroxidation levels and total oxidant/antioxidant status in serum and saliva from patients with chronic and aggressive periodontitis. Oxidative stress index: A new biomarker for periodontal disease? Journal of Periodontology. 2014; 85(10):1432-41. PMID: 24635543. https://doi.org/10.1902/jop.2014.130654. DOI: https://doi.org/10.1902/jop.2014.130654
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology. 1957; 28(1):56-63. PMID: 13458125. https://doi.org/10.1093/ajcp/28.1.56 DOI: https://doi.org/10.1093/ajcp/28.1.56
Classics Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75. PMID: 14907713. https://doi.org/10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Zak B. Cholesterol methodologies: a review. Clinical chemistry. 1977; 23(7):1201-14. PMID: 326436. https:// doi.org/10.1093/clinchem/23.7.1201 DOI: https://doi.org/10.1093/clinchem/23.7.1201
Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes: II. Solubilization, purification, and properties. Journal of Biological Chemistry. 1964; 239(7):2379-85. PMID: 14209972. https://doi. org/10.1016/S0021-9258(20)82245-5 DOI: https://doi.org/10.1016/S0021-9258(20)82245-5
Watt KC, Plopper CG, Buckpitt AR. Measurement of cytochrome P450 2E1 activity in rat tracheobronchial airways using high-performance liquid chromatography with electrochemical detection. Analytical Biochemistry. 1997; 248(1):26-30. PMID: 9177721. https://doi. org/10.1006/abio.1997.2109 DOI: https://doi.org/10.1006/abio.1997.2109
Hyder MA, Hasan M, Mohieldein A. Comparative study of 5’-nucleotidase test in various liver diseases. Journal of Clinical and Diagnostic Research: JCDR. 2016; 10(2):BC01. PMCID:PMC4800507.PMID: 27042442. https://doi.org/10.7860/JCDR/2016/12754.7163 DOI: https://doi.org/10.7860/JCDR/2016/12754.7163
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology. 2021; 227. PMID: 33927623. PMCID: PMC8078867. https://doi.org/10.3389/ fphar.2021.643972
Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World Journal of Gastroenterology: WJG. 2014; 20(10):2515. PMID: 24627588. PMCID: PMC3949261. https://doi. org/10.3748/wjg.v20.i10.2515 DOI: https://doi.org/10.3748/wjg.v20.i10.2515
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, BittoA, et al. Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity. 2017; 2017. PMID: 28819546. PMCID: PMC5551541. https://doi. org/10.1155/2017/8416763 DOI: https://doi.org/10.1155/2017/8416763
Woolbright BL, Jaeschke H. Xenobiotic and endobiotic mediated interactions between the cytochrome P450 system and the inflammatory response in the liver. Advances in Pharmacology. 2015; 74:131-61. PMID: 28819546. PMCID: PMC5551541. https://doi. org/10.1016/bs.apha.2015.04.001 DOI: https://doi.org/10.1016/bs.apha.2015.04.001
Losser MR, Payen D. Mechanisms of liver damage. InSeminars in Liver Disease. © 1996 by Thieme Medical Publishers, Inc. 1996; 16(04):357-67. PMID: 9027949. https://doi.org/10.1055/s-2007-1007249 DOI: https://doi.org/10.1055/s-2007-1007249
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry. 2015; 97:55-74. PMID: 25942353. https://doi.org/10.1016/j.ejmech.2015.04.040 DOI: https://doi.org/10.1016/j.ejmech.2015.04.040
Jeong MS, Park S, Han EJ, Park SY, Kim MJ, Jung K, Cho SH, Kim SY, Yoon WJ, Ahn G, Kim KN, et al. Pinus thunbergii PARL leaf protects against alcoholinduced liver disease by enhancing antioxidant defense mechanism in BALB/c mice. Journal of Functional Foods. 2020; 73:104116. https://doi.org/10.1016/j.jff.2020.104116 DOI: https://doi.org/10.1016/j.jff.2020.104116
Ibrahim NM, Eweis EA, El-Beltagi HS. Abdel-Mobdy. Effect of lead acetate toxicity on experimental male albino rat. Asian Pac J Trop Biomed. 2012; 2:41-6. PMCID: PMC3609202. PMID: 23569832. https://doi. org/10.1016/S2221-1691(11)60187-1 DOI: https://doi.org/10.1016/S2221-1691(11)60187-1
Chen H, Zhu C, Zhou X. Effects of lead and cadmium combined heavy metals on liver function and lipid metabolism in mice. Biological Trace Element Research. 2023; 201(6):2864-76. PMID: 35994140. https://doi. org/10.1007/s12011-022-03390-5 DOI: https://doi.org/10.1007/s12011-022-03390-5
Shchepinov MS. Polyunsaturated fatty acid deuteration against neurodegeneration. Trends in Pharmacological Sciences. 2020; 41(4):236-48. PMID: 32113652. https:// doi.org/10.1016/j.tips.2020.01.010 DOI: https://doi.org/10.1016/j.tips.2020.01.010
Sharma A, Sharma V, Kansal L. Amelioration of leadinduced hepatotoxicity by Allium sativum extracts in Swiss albino mice. Libyan Journal of Medicine. 2010; 5(1). PMID: 28156294.PMCID: PMC3066784. https:// doi.org/10.3402/ljm.v5i0.4621 DOI: https://doi.org/10.3402/ljm.v5i0.4621
Sharma V, Sharma A, Kansal L. The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food and Chemical Toxicology. 2010; 48(3):928-36. PMID: 20060875. https://doi.org/10.1016/j.fct.2010.01.002 DOI: https://doi.org/10.1016/j.fct.2010.01.002
Seth E, Ahsan AU, Bamrara P, Kaushal S, Sharma VL, Chopra M, et al. Cytoprotective and antioxidant potential of Aegle marmelos on cadmium-induced hepato-renal toxicity: An in vivo study. Biologia. 2021; 76(6):1859-72. https://doi.org/10.1007/s11756-021-00733-w DOI: https://doi.org/10.1007/s11756-021-00733-w
Adwas AA, Elsayed A, Azab AE, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019; 6(1):43-7. https://doi. org/10.15406/jabb.2019.06.00173 DOI: https://doi.org/10.15406/jabb.2019.06.00173
Jadot G, Vaille A, Maldonado J, Vanelle P. Clinical pharmacokinetics and delivery of bovine superoxide dismutase. Clinical pharmacokinetics. 1995; 28(1):17-25. PMID: 7712659. https://doi.org/10.2165/00003088-199528010- 00003 DOI: https://doi.org/10.2165/00003088-199528010-00003
Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000; 153(1-3):83-104. PMID: 11090949. https://doi.org/10.1016/S0300-483X(00)00306-1 DOI: https://doi.org/10.1016/S0300-483X(00)00306-1
Pérez LM, Milkiewicz P, Ahmed-Choudhury J, Elias E, Ochoa JE, Pozzi EJ, Coleman R, Roma MG, et al. Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+- dependent, PKC-mediated mechanism: protective effect of PKA. Free Radical Biology and Medicine. 2006; 40(11):2005-17. PMID: 16716901. https://doi. org/10.1016/j.freeradbiomed.2006.01.034 DOI: https://doi.org/10.1016/j.freeradbiomed.2006.01.034
Gatsing D, Aliyu R, Kuiate JR, Garba IH, Jaryum KH, Tedongmo N, Tchouanguep FM, Adoga GI, et al. Toxicological evaluation of the aqueous extract of Allium sativum bulbs on laboratory mice and rats. Cameroon Journal of Experimental Biology. 2005; 1(1):39-45. https://doi.org/10.4314/cajeb.v1i1.37926 DOI: https://doi.org/10.4314/cajeb.v1i1.37926
Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SH, El-Refaie A. Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology. 2005; 206(1):1-5. PMID: 15590105. https://doi.org/10.1016/j. tox.2004.07.006 DOI: https://doi.org/10.1016/j.tox.2004.07.006
El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: Protective role of vitamin E and β-carotene. Food and Chemical Toxicology. 2004; 42(10):1563-71. PMID: 15304303. https://doi. org/10.1016/j.fct.2004.05.001 DOI: https://doi.org/10.1016/j.fct.2004.05.001
Christopher T. Potential contribution of dietary sources to urinary cadmium and b2-microglobulin excretion of occupationally exposed workers. J Occup Med. 1991; 33:1175-9. PMID: 1765861. https://doi. org/10.1097/00043764-199111000-00016 DOI: https://doi.org/10.1097/00043764-199111000-00016
Fukuda N, Ontko JA. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. Journal of Lipid Research. 1984; 25(8):831-42. PMID: 6491528. https://doi.org/10.1016/S0022-2275(20)37747-6 DOI: https://doi.org/10.1016/S0022-2275(20)37747-6
Yadav R, Jindal A, Goyal PK. Protective action of diltiazem against cadmium induced biochemical changes in the brain of Swiss albino mice. Annals of Neurosciences. 2010; 12(3):37-40. https://doi.org/10.5214/ans.0972. 7531.2005.120302 DOI: https://doi.org/10.5214/ans.0972.7531.2005.120302
Kojima M, Nemoto K, Murai U, Yoshimura N, Ayabe Y, Degawa M, et al. Altered gene expression of hepatic lanosterol 14α-demethylase (CYP51) in lead nitratetreated rats. Archives of Toxicology. 2002; 76:398-403. PMID: 12111004. https://doi.org/10.1007/s00204-002- 0365-3 DOI: https://doi.org/10.1007/s00204-002-0365-3
Zanger UM, Schwab M. Pharmacology and therapeutics cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013; 138(1):103-41. PMID: 23333322. https://doi. org/10.1016/j.pharmthera.2012.12.007 DOI: https://doi.org/10.1016/j.pharmthera.2012.12.007
Nanri H, Hara M, Nishida Y, Shimanoe C, Nakamura K, Higaki Y, Imaizumi T, Taguchi N, Sakamoto T, Horita M, Shinchi K. Dietary patterns and serum gamma-glutamyltransferase in Japanese men and women. Journal of Epidemiology. 2015; 25(5):378-86. PMCID: PMC4411237.PMID: 25787241. https://doi.org/10.2188/jea.JE20140158 DOI: https://doi.org/10.2188/jea.JE20140158
Batsios G, Najac C, Cao P, Viswanath P, Subramani E, Saito Y, Gillespie AM, Yoshihara HA, Larson P, Sando S, Ronen SM. In vivo detection of γ-glutamyl-transferase up-regulation in glioma using hyperpolarized γ-glutamyl-[1-13C] glycine. Scientific Reports. 2020; 10(1):6244. PMCID: PMC7148357. PMID: 32277103. https://doi.org/10.1038/s41598-020-63160-y DOI: https://doi.org/10.1038/s41598-020-63160-y
Singh R, Sharma V. Anti-hepatotoxic Potential of Indigofera tinctoria and its isolated Isothiocyanate compound ‘ITC-1’against NPYR-CCl 4 Intoxicated Mice. Toxicology International. 2019; 30-6. https://doi. org/10.18311/ti/2019/v26i1&2/23997
Zimmermann H. 5’-Nucleotidase: molecular structure and functional aspects. Biochemical Journal. 1992; 285(Pt 2):345. PMCID: PMC1132794. PMID: 1637327. https://doi.org/10.1042/bj2850345 DOI: https://doi.org/10.1042/bj2850345
Martin DS, Bertino JR, Koutcher JA. ATP depletion+ pyrimidine depletion can markedly enhance cancer therapy: Fresh insight for a new approach. Cancer Research. 2000; 60(24):6776-83.PMID: 11156364.